共查询到20条相似文献,搜索用时 15 毫秒
3.
5.
8.
针对矿化蚀变信息常常受其他地物信息的干扰与影像空间分辨率的制约而表现得非常微弱的问题,该文以Landsat7号ETM+30m空间分辨率的影像为数据基础,重采样得到一系列不同空间分辨率的影像;运用ETM+波段3/波段1比值法获得铁染蚀变相对含量灰度图,采用分形模型计算出不同分辨率下蚀变矿物的分维值,进而获得分辨率—分维值的一元线性回归方程;最后建立了基于分形理论的蚀变矿物多尺度分析模型,得到蚀变矿物空间分布特征变化的参考尺度。结果表明,在一定尺度范围内(30~280m),蚀变矿物显示出空间尺度特征。 相似文献
9.
高光谱图像异常目标检测主要用于检测图像中的区别于背景环境的异常目标,为图像目标的判读提供一个初步的判断,是高光谱图像应用的一个重要内容.本文在研究现有异常目标检测算法的基础上,采用基于主成分抑制和顶点成分分析相结合的方法,对实验图像中的异常目标进行了检测,取得了较好的效果. 相似文献
10.
传统的遥感地质填图方法较少考虑到一个像元中多种地物共生存在的情况,因此所填图件难以反映矿物的分布特征。针对线性混合模型解混精度不高的问题,使用二次散射非线性混合模型对高光谱数据进行光谱解混,并在此基础上,提出了k(k≥2)类地物的填图规则。采用美国内华达州Cuprite地区AVIRIS数据进行填图实验,将其结果与Clark等的填图结果进行对比。实验结果表明:与线性模型的矿物填图相比,基于二次散射非线性混合模型所填图件更加接近矿物的真实分布;使用k(k≥2)类矿物填图规则的填图结果细节丰富,与Clark等人的填图结果吻合度高。 相似文献
11.
提出了一种基于Fisher权重分析的迭代光谱解混方法(WLSMA),该方法首先对高光谱图像进行区域分割,在分割后的各子块中自动提取端元;再次对提取的端元进行聚类,从光谱的整体特征上将不同类别的端元区分开,针对聚类结果中的每一类别各选取几个具有代表性的端元光谱,并对最优光谱进行窗口卷积处理,结合In_CoB指标构建端元光谱样本库;最后对图像进行迭代光谱解混处理,在丰度反演过程中引入基于Fisher准则的补偿权值矩阵以提高反演精度。AVIRIS高光谱数据实验证明,WLSMA不需要大量先验信息,利用Fisher准则和迭代光谱分析理论增强了相似性矿物的可分性,为加强对矿区地表岩性的认识和模拟提供了更大的灵活性和可能性,对高光谱矿物填图有一定的借鉴意义。 相似文献
12.
13.
14.
15.
16.
虽然全球对矿产的需求不断加大,而近年发现的高质量矿床却在不断减少。目前正在寻找的矿床大多属于复合式矿床,目标元素丰度低,通常与细粒多相矿物组合半生,或者产在亚微粒颗粒中,这样就大大降低了矿石处理效率和回收率。了解矿石的化学成分、矿物成分和结构特征,有助于调整甚至改变矿石处理工艺, 相似文献
17.
18.
一种基于主成分分析的协同克里金插值方法 总被引:1,自引:0,他引:1
针对协同克里金插值方法在插值时,辅助变量较多造成计算复杂度增加,而辅助变量较少引起插值精度降低这一问题,提出了一种基于主成分分析的协同克里金插值方法(PCA-CoKriging)。该方法首先使用主成分分析对插值相关变量进行将维,得到较少几个综合指标,然后里利用这几个综合指标作为辅助变量进行协同克里金插值。为验证该方法的有效性和数据分布对该方法的影响,本文选取了2016年北京市范围内4个季节中PM2.5浓度满足正态分布效果不同的4组数据,分别使用PCA-CoKriging和普通克里金插值方法、常规协同克里金插值方法,进行了插值试验。结果表明,本文方法与普通克里金插值方法、常规协同克里金插值法在4组试验中的平均绝对误差分别为4.91、6.04、5.61,平均均方根误差分别为6.65、8.76、7.57。综合比较,本文方法比常规协同克里金插值的平均绝对误差与均方根误差分别提升了10.73%、12.56%,比普通克里金插值法的平均绝对误差与均方根误差分别提升了18.71%、24.09%。 相似文献
19.
传统云检测方法未顾及云具有半透明性质的特点,直接从遥感图像中提取云特征用于云检测,降低了云检测精度.本文根据Mie散射理论构建云与地表信息的线性模型,即将一幅遥感图像看作是云与地表信息线性构成的,从整个纹理结构的角度看,云图像位于一个低维的子空间,首先采用主成分分析方法(PCA)构建云成分分离模型,从遥感图像中分离出云成分,其次采用局部二值模式(LBP)特征提取云成分的纹理作为特征向量,最后训练支持向量机分类器进行云检测.本文以755幅航空图像为实验对象,其中包含158幅有云区域,正检率达到90.69%,误检率9.31%,说明本文方法对航空图像云检测有一定效果. 相似文献
20.
现有多源居民地匹配中存在众多的面要素度量指标,若全部进行考虑,则增加了匹配的复杂性;若只考虑部分指标,则可能造成匹配信息的缺失,影响匹配结果。针对这一问题,本文提出一种采用主成分分析方法的面状居民地匹配方法。借鉴主成分分析法中降维的思想,对居民地各项度量指标进行定性定量分析,通过科学计算确定面要素匹配综合指标,用较少的新指标代替原来较多的相似性指标,进而根据获得的整体相似性评价指标进行居民地匹配。实验分析表明,本文方法简化了匹配过程中众多的相似性指标,降低了匹配复杂性和不确定性,避免了各相似权值确定较为随意的问题,有效提高了匹配效率和正确率。 相似文献