首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an integrated navigation system for underwater vehicles to improve the performance of a conventional inertial acoustic navigation system by introducing range measurement. The integrated navigation system is based on a strapdown inertial navigation system (SDINS) accompanying range sensor, Doppler velocity log (DVL), magnetic compass, and depth sensor. Two measurement models of the range sensor are derived and augmented to the inertial acoustic navigation system, respectively. A multirate extended Kalman filter (EKF) is adopted to propagate the error covariance with the inertial sensors, where the filter updates the measurement errors and the error covariance and corrects the system states when the external measurements are available. This paper demonstrates the improvement on the robustness and convergence of the integrated navigation system with range aiding (RA). This paper used experimental data obtained from a rotating arm test with a fish model to simulate the navigational performance. Strong points of the navigation system are the elimination of initial position errors and the robustness on the dropout of acoustic signals. The convergence speed and conditions of the initial error removal are examined with Monte Carlo simulation. In addition, numerical simulations are conducted with the six-degrees-of-freedom (6-DOF) equations of motion of an autonomous underwater vehicle (AUV) in a boustrophedon survey mode to illustrate the effectiveness of the integrated navigation system.  相似文献   

2.
Five measurement strategies (four in situ, one remote) for estimating directional wave spectra were intercompared in a 1980 experiment at the Coastal Engineering Research Center's Field Research Facility in Duck, NC. The systems included two pressure sensor/biaxial current meter combinations (different manufacturers), a triaxial acoustic current meter, an SXY gauge (square array of four pressure sensors), and a shore-based imaging radar. A detailed error analysis suggests sources for differences in estimated wave spectra from the different instruments; in general, they intercompare favorably. The major deviation among in situ gauges was associated with the triaxial acoustic current meter. Reliance on a vertical velocity measurement (instead of a direct pressure or sea-surface elevation measurement) can contribute additional uncertainty in directional spectral estimates. The imaging radar was successful in distinguishing multiple wave trains at the same frequency, which was not possible with the simple spectral estimation analysis applied to in situ data. However, the radar is not useful in providing accurate estimates of spectral density, nor in distinguishing multiple wave trains of different frequencies coming from the same direction. Selection of a measurement strategy for a particular need depends on the precise data requirements for that application. Although the five tested intercompared well, in practice not all are equally suitable for every application.  相似文献   

3.
Covert communications between underwater and aerial platforms would increase the flexibility of surface and air vehicles engaged in undersea warfare by providing a new netcentric warfare communications capability and could have a variety of commercial and oceanographic applications. Research into an acousto-optic sensor shows promise as a means for detecting acoustic data projected toward the water surface from a submerged platform. The laser-based sensor probes the water surface to detect perturbations caused by an impinging acoustic pressure field. Experimental studies were conducted to demonstrate acousto-optic sensor feasibility for obtaining accurate phase preserved recordings of communication signals across the air-water interface. The recorded surface velocity signals were transferred to an acoustic communications receiver that used conventional acoustic telemetry algorithms such as adaptive equalization to decode the signal. The detected, equalized, and decoded bit error rate performance is presented for hydrostatic and more realistic, hydrodynamic water surface conditions.  相似文献   

4.
Underwater acoustic transient signals are generated mechanically at known positions along a wharf. These signals are received by a wide aperture planar array of four underwater acoustic sensors, whose positions relative to the wharf are unknown. A method is described that enables the positions of the sensors to be estimated from accurate differential time-of-arrival measurements (with 0.1 /spl mu/s precision) as the signal wavefronts traverse the array. A comparison of the estimated positions with the nominal positions of the first three sensors, which form a 20-m-wide aperture horizontal line array, reveals a 2-cm displacement of the middle sensor from the line array axis. This slight bowing of the line array results in overranging (bias error of 3%) when the wavefront curvature method is used with the nominal collinear sensor positions to locate a static source of active sonar transmissions at a range of 59.2 m. The use of the spherical intersection method coupled with the estimated sensor positions of the line array provides an order of magnitude improvement in the range estimate (within 0.3% of the actual value). However, systematic ranging errors are observed when the sound propagation medium becomes nonstationary. Next, the differences in the arrival times of the direct path and boundary-reflected path signals at the middle sensor of the wide aperture line array are estimated using the differential phase residue of the analytic signal at the sensor output. These multipath delays are used to estimate the range and depth of the source. Although the average value of the multipath range estimates is within 0.5% of the actual value, the variance of the range estimates is 50 times larger when compared with the results of the spherical intersection and wavefront curvature methods. The multipath delay data are also processed to provide a reliable estimate of the temporal variation in the water depth enabling the tidal variation to be observed.  相似文献   

5.
Shallow-water-boundary layers are affected by current, waves, bottom topography, and stratification. Precise turbulence measurements through such regions are difficult. A deployment of a BASS (Benthic Acoustic Stress Sensor) tripod in November 1997 in the North Sea in 15 m of water provides a data set to examine turbulent boundary layer models. The deployment spanned both calm and storm sea conditions, had strong tidal currents, the location was uniform horizontally, and the bottom-boundary layer was well mixed in temperature. Estimates of stress derived from the covariance, log-fit, drag-law, and inertial-dissipation method have been compared. The covariance stress estimate had the largest sample to sample scatter, but from theoretical considerations should give the best estimate in stratified flow. The drag-law estimate gave the least sampling variability but suffers from the user having to measure a drag coefficient by some other method. The inertial-dissipation method was more tolerant to sensor misalignment, had the second greatest sampling variability, and could not be used to measure stress during slack tide. Averaging many semidiurnal tidal cycles showed greater tidal asymmetry of the log-fit stress than the covariance or inertial-dissipation stress estimates. Turbulent energy generation and dissipation were measured and balanced individually for the upper two sensors and followed a one-over-height-above-bottom profile  相似文献   

6.
A new broadband acoustic Doppler current profiler (ADCP) is described, with a useful range comparable to that of a commercially available narrowband (incoherent) system of the same acoustic frequency, but having enhanced performance. The extra performance may be traded off among (1) reduced velocity variance, (2) reduced averaging time, and (3) finer depth resolution. This improvement permits the observation of phenomena with smaller time and space scales than is now possible with available ADCPs. An expression predicting r.m.s. velocity error in terms of system parameters and the measured acoustic data is given and is shown to be consistent with the independently measured velocity error among redundant beams. Two major sources of bias error in incoherent ADCPs are shown to be much reduced for the broadband system. Field data demonstrating the improved performance over the existing incoherent ADCP are shown for cases of both strong and weak shear  相似文献   

7.
为规范水声环境资料质量检核评估工作,开展了水声环境资料质量检核评估标准规范研究,参照水声环境数据后期处理一般程序,梳理分析了原始数据、处理算法、模型运用及处理流程等数据质量误差来源;结合标准化水声环境资料处理程序及成果形式,研究了数据及数据处理全流程检核评估方法,给出数据文件、处理代码及配套文档资料应包含的内容及检查方法;研判了数据质量检核评估要求,给出三级验收制度、检核评估形式及提交的资料清单要求,对开展水声环境资料验收汇交规程及相关标准规范的制定、修订工作,具有较强的参考价值。  相似文献   

8.
We present a 1.5D steady-state model of thermal perturbations in the core of detachment anticlines. The model incorporates the effects of heat conduction, advection by folding, radiogenic sources, and conversion of work into heat by viscous dissipation. We work out analytical solutions of model's equations for heat flow and temperature field for the case of low amplitude detachment folds growing in a thick homogeneous stratigraphy.Our analytical solutions for the simplest case of no heat sources show that detachment folds develop a thermal boundary layer. Conduction of heat dominates inside the layer, whereas advection of heat by folding prevails outside the boundary layer. We also find that heat flow in a growing detachment fold decays exponentially with the square of the thickness of the detached stratigraphic section. When heat sources are included into the problem we find that radiogenic heat generates thermal anomalies at the crest of the anticlines whereas viscous dissipation produces thermal anomalies at the core of the detachment fold.We analyze three cases of geological interest: detachment folds growing in evaporitic sequences, marine carbonates, and shaley sediments. For a typical uplift rate of 2 mm/yr conduction dominates in the first class of rocks. Viscous dissipation dominates in folds growing in limestone due to its high viscosity. Advection and the generation of heat by radiogenic isotopes dominate the growth of detachment folds in shale. Additionally, the cooling histories of Lagrangian particles embedded in the fold for the last two cases are analyzed. The core of the fold is characterized by rapid cooling whereas the limbs cool at slower rates than the core. Thus, the development of detachment anticlines may either accelerate maturation of source rocks and expand the maturation window or halt it by removing source rocks from the generating window.  相似文献   

9.
刘伯胜 《海洋工程》2004,22(3):61-64,74
矢量传感器是一种新型水声传感器。介绍了应用矢量传感器确定目标方位的理论和方法,给出了仿真和实验研究结果,讨论了矢量传感器具体体积小、输出信号多、抗各向同性干扰等特性。最后定性地分析了目标方位的方位估值误差。  相似文献   

10.
A basin-scale acoustic tomography simulation is carried out for the northeast Pacific Ocean to determine the accuracy with which time must be kept at the sources when clocks at the receivers are accurate. A sequential Kalman filter is used to estimate sound-speed fluctuations and clock errors. Sound-speed fluctuations in the simulated ocean are estimated from an eddy-resolving hydrodynamic model of the Pacific forced by realistic wind fields at daily resolution from 1981-1993. The model output resembles features associated with El Nino and the Southern Oscillation, as well as many other features of the ocean's circulation. Using a Rossby-wave resolving acoustic array of four fixed sources and twenty drifting receivers, the authors find that the percentage of the modeled ocean's sound-speed variance accounted for with tomography is 92% at 400-km resolution, regardless of the accuracy of the clocks. Clocks which drift up to hundreds of seconds of error or more for a year do not degrade tomographic images of the model ocean. Tomographic reconstructions of the sound-speed field are insensitive to clock error primarily because of the wide variety of distances between the receivers from each source. Every receiver “sees” the same clock error from each source, regardless of section length, but the sound-speed fluctuations in the modeled ocean cannot yield travel times which lead to systematic changes in travel time that are independent of section length. The Kalman filter is thus able to map the sound-speed field accurately in the presence of large errors at the source's clocks  相似文献   

11.
对安装在海上风电钢管桩基础上的升降式网箱结构的波浪场特性进行研究,掌握升降式网箱结构内部及结构后方水体的运动特征及速度场变化情况。基于OpenFOAM软件包开发了波、流与孔隙介质结构相互作用的数值计算模型,将网箱结构按等效阻力简化为多孔介质结构,开展升降式网箱结构的波浪场特性研究。研究结果表明:网箱结构对流体具有一定的阻流作用,网箱结构内部速度场得到一定程度的减小,网箱结构背浪侧也有一定的速度衰减区域;对比网箱结构顶部不同潜深条件下的网箱结构内部流场特征,网箱结构顶部潜深在1/4D~1/2DD为水深)范围内网箱结构内部流场速度最小、流场最为稳定、速度分布均匀,网箱结构向浪侧前方和背浪侧后方流场波动较小。所得结论表明在钢管桩基础上安装升降式网箱结构时需要关注的网箱结构对流场特性的影响,充分考虑网箱结构阻力对流速的作用,掌握极端工况下升降式网箱结构保持优良养殖环境需要下潜的高度范围,以保障升降式网箱的安全。  相似文献   

12.
为适应水下载体高精度实时导航定位的需求,提出了基于卫星导航定位的浮标水声定位系统定位模式,主要讨论了长基线固定浮标定位系统和超短基线单体智能浮标系统的工作原理和点位计算模型,分析了水声定位系统定位的准确度和误差源,对促进全球海域实现全天候高精度完全水下自主定位具有一定的指导意义。  相似文献   

13.
介绍了海面噪声场条件下的声压与质点振速的时空相关函数。论证了海面噪声场垂直与水平方向噪声的各向异性程度。结果表明,在垂直于海平面的方向上,噪声场表现为各向异性;在与海面的水平方向上,噪声场表现为各向同性。结果表明,各向同性噪声场条件下基于矢量水听器被动检测的声纳系统目标水平方位角估计是基本可靠的,但垂直方位角的计算需要修正。  相似文献   

14.
A sensitivity analysis of the waterline method of constructing a Digital Elevation Model (DEM) of an intertidal zone using remote sensing and hydrodynamic modelling is described. Variation in vertical height accuracy as a function of beach slope is investigated using a set of nine ERS Synthetic Aperture Radar (SAR) images of the Humber/Wash area on the English east coast acquired between 1992 and 1994. Waterlines from these images are heighted using a hydrodynamic tide-surge model and interpolated using block kriging. On 1:500 slope beaches, an average block height estimation standard deviation of 18–22 cm is achieved. This rises to 27 cm on 1:100 slope beaches, and 32 cm on 1:30 slope beaches. The average heighting error at different slopes is decomposed into components due to waterline heighting error, inadequate sensor resolution and interpolation inaccuracy. It is shown that, at 1:500 slope, waterline heighting error and interpolation inaccuracy are the main error sources, whilst at 1:30 slope, errors due to inadequate sensor resolution become dominant. The ability of the technique to generate intertidal DEMs for almost the entire coastal zone in a complete ERS SAR scene covering 100×100 km is demonstrated.  相似文献   

15.
This paper presents an integrated navigational algorithm for unmanned underwater vehicles (UUV) using two acoustic range transducers and strap-down inertial measurement unit (SD-IMU). A range measurement model is derived for a UUV having one acoustic transducer and cruising around two reference transponders at sea floor or surface. The proposed algorithm, called pseudo long base line (PLBL), estimates the position of the vehicle integrating the SD-IMU signals corrected with the two range measurements. Extended Kalman filter was applied to propagate error covariance, to update measurement errors and to correct state equation whenever the external measurements are available. Simulations were conducted to illustrate the effectiveness of the PLBL using the 6-d.o.f. nonlinear numerical model of a UUV at current flow, excluding bottom-fixed DVL. This paper also shows the error convergence of the vehicle's initial position by the additional range measurements without velocity information.  相似文献   

16.
We have developed a new system for real-time observation of tsunamis and crustal deformation using a seafloor pressure sensor, an array of seafloor transponders and a Precise Point Positioning (PPP ) system on a buoy. The seafloor pressure sensor and the PPP system detect tsunamis, and the pressure sensor and the transponder array measure crustal deformation. The system is designed to be capable of detecting tsunami and vertical crustal deformation of ±8 m with a resolution of less than 5 mm. A noteworthy innovation in our system is its resistance to disturbance by strong ocean currents. Seismogenic zones near Japan lie in areas of strong currents like the Kuroshio, which reaches speeds of approximately 5.5 kt (2.8 m/s) around the Nankai Trough. Our techniques include slack mooring and new acoustic transmission methods using double pulses for sending tsunami data. The slack ratio can be specified for the environment of the deployment location. We can adjust slack ratios, rope lengths, anchor weights and buoy sizes to control the ability of the buoy system to maintain freeboard. The measured pressure data is converted to time difference of a double pulse and this simple method is effective to save battery to transmit data. The time difference of the double pulse has error due to move of the buoy and fluctuation of the seawater environment. We set a wire-end station 1,000 m beneath the buoy to minimize the error. The crustal deformation data is measured by acoustic ranging between the buoy and six transponders on the seafloor. All pressure and crustal deformation data are sent to land station in real-time using iridium communication.  相似文献   

17.
The computational fluid dynamics study is performed to analyze the impact of the cultured fish on the flow field through net cage and the deformation of net cage. The shear stress turbulent k-omega model is applied to simulate the flow field through the net cage, and the large deformation nonlinear structure model is adopted to conduct the structural analysis of the flexible net cage. To validate the net-fluid interaction model of the net cage in current, a series of physical model tests are conducted, which indicate that the numerical model can accurately simulate the flow field around the net cage and the deformation of the net cage. A fish model is used to simulate the effect of fish behavior on the flow pattern around the net cage and the deformation of the net cage. In addition, the flow fields around the net cage in current are investigated considering different fish group structures, fish swimming speeds, fish distributions and fish stocking densities. The results indicate that the circular movement of fish in the still water leads to a low pressure zone at the center of net cage, which causes a strong vertical flow along the center line of the net cage. The drag force on the net cage is significantly decreased with the increasing fish stocking density, but the most severe deformation of net cage occurred in the case of medium fish stocking density.  相似文献   

18.
An acoustic tomography simulation is carried out in the eastern North Pacific ocean to assess whether climate trends are better detected and mapped with mobile or fixed receivers. In both cases, acoustic signals from two stationary sources are transmitted to ten receivers. Natural variability of the sound-speed field is simulated with the Naval Research Laboratory (NRL) layered-ocean model. A sequential Kalman-Bucy filter is used to estimate the sound speed field, where the a priori error covariance matrix of the parameters is estimated from the NRL model. A spatially homogeneous climate trend is added to the NRL fluctuations of sound speed, but the trend is not parameterized in the Kalman filter. Acoustic travel times are computed between the sources and receivers by combining sound speeds from the NRL model with those from the unparameterized climate trend. The effects of the unparameterized climate trend are projected onto parameters which eventually drift beyond acceptable limits. At that time, the unparameterized trend is detected. Mobile and fixed receivers detect the trend at about the same time. At detection time, however, maps from fixed receivers are less accurate because some of the unparameterized climate trend is projected onto tile spatially varying harmonics of the sound-speed field. With mobile receivers, the synthetic apertures suppress the projection onto these harmonics. Instead, the unparametrized trend is correctly projected onto the spatially homogeneous portion of the parameterized sound-speed field  相似文献   

19.
深海近底三分量磁力仪设计   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种新的深海海底三分量磁力仪设计思路,用于高灵敏度地磁测量调查海底矿体分布,其磁力测量探头基于各向异性磁阻传感器。详细分析了磁阻传感器的误差模型,提出用Broyden算法实现误差校正,并给出了在个人电脑上的实现结果。描述了水下系统中传感测量电路以及通信、存储功能的基本设计思路。最后给出目前的实验与测试数据,并提出了后续工作思路。  相似文献   

20.
Underwater acoustic sensor networks (UASNs) can be employed in a vast range of applications, retrieving accurate and up-to-date information from underneath the ocean's surface. Although widely used by terrestrial sensor networks, radio frequencies (RFs) do not propagate well underwater. Therefore, acoustic channels are employed as an alternative to support long-distance and low-power communication in underwater sensor networks even though acoustic signals suffer from long propagation delay and have very limited bandwidth. In this paper, we introduce an adaptive propagation-delay-tolerant collision-avoidance protocol (APCAP) for the media access control (MAC) sublayer of UASN. The protocol includes an improved handshaking mechanism that improves efficiency and throughput in UASN where there is a large propagation delay. The mechanism guarantees nodes that can potentially interfere with a forthcoming transmission are properly informed. It also allows a node to utilize its idle time while waiting for messages to propagate, which is otherwise wasted by most existing MAC protocols. The simulation results indicate that where employed by UASN, APCAP exhibits good performance and outperforms the other MAC protocols examined in this paper.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号