首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High nitrogen (N) loading rates received by coastal bays can have deleterious effects on aquatic ecosystems. Salt marshes can intercept land-based N through seasonal plant uptake, denitrification, and burial. Salt marshes fringing Delaware’s Inland Bays are characterized by different plant species occurring in close proximity. To evaluate N pool retention and loss for the dominant plant species, we measured seasonal N concentration and pool size, N resorption efficiency, loss during decomposition, and soil N. Seasonal variation in N pools and fluxes differed among species. Seasonal differences in the total N pools of the herbaceous species were largely influenced by belowground fine root and dead macro-organic matter fluxes. N production rate estimates ranged from 18 g N m−2 year−1 aboveground for the high marsh shrub to 40.8 g N m−2 year−1 above- and belowground for the high marsh rush illustrating the importance of incorporating species-specific dynamics into ecosystem N budgets.  相似文献   

2.
We examined connectivity among marsh subhabitats to determine the structural limits and important components of a polyhaline salt marsh by studying the patterns of abundance, residency, and movement of a numerically and ecologically dominant nektonic fish (mummichog, Fundulus heteroclitus). We captured, tagged (n = 14,040 individuals, 30–110 mm), and recaptured from Feb 2001 to Jul 2002, although most recaptures (75–95% by tagging location) occurred within 150 days. Seasonal residency and movements were common among most subhabitats based on catch per unit effort and recapture per unit effort. Thus, these (marsh pools, intertidal and subtidal creeks, and marsh surface) should be considered natural subhabitats within New England type salt marshes. Further, all these subhabitat types should be included in studies of salt marsh nekton and marsh restoration and creation activities.  相似文献   

3.
To assess the potential for habitat isolation effects on estuarine nekton, we used two species with different dispersal abilities and life history strategies, mummichog (Fundulus heteroclitus) and pinfish (Lagodon rhomboides) to examine: (1) distribution trends among estuarine shallow-water flat and various intertidal salt marsh habitats and (2) the influence of salt marsh habitat size and isolation. Collections were conducted using baited minnow traps set within nonisolated interior marshes (interior), nonisolated fringing marshes (nonisolated), isolated island marshes (isolated), and shallow-water flat habitats (flat) that were adjacent to isolated and nonisolated marshes. Size range of individuals collected included juvenile and adult F. heteroclitus (20–82-mm standard length) and L. rhomboides (22–151-mm standard length). During high tide, F. heteroclitus exclusively used marsh habitats, particularly high marsh, whereas L. rhomboides used marshes and flats. F. heteroclitus abundance followed an interior > nonisolated > isolated pattern. L. rhomboides abundance patterns were less consistent but followed a nonisolated > isolated > interior pattern. A size-dependent water depth relationship was observed for both species and suggests size class partitioning of marsh and flat habitats during high tide. Minimum water depth (~31 cm) restricted L. rhomboides populations in marshes, while maximum water depth (~69 cm) restricted F. heteroclitus population use of marshes and movement between marsh habitats. Disparities in F. heteroclitus young of year contribution between isolated compared to nonisolated and interior marsh types suggests isolated marshes acted as population sinks and were dependent on adult emigrants. Resident and transient salt marsh nekton species utilize estuarine habitats in different ways and these fundamental differences can translate into how estuarine landscape might affect nekton.  相似文献   

4.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

5.
Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.  相似文献   

6.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

7.
We measured the amount of arsenic, chromium, copper, lead, nickel, vanadium, and zinc accumulated over a five-year period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay of Fundy, Canada. Study sites extended from outer to inner Bay, spanning a gradient in tidal range (6–12 m) and mean sediment deposition rate (0.27–1.76 cm yr−1). In each study site, metal concentrations were measured in low and high marsh areas. Concentrations of chromium, nickel, and zinc appear to be within their natural range, while arsenic, lead, and vanadium are enriched in some sites. Calculated sediment metal loadings rates showed variability among marsh sites that closely followed sediment deposition patterns, suggesting sediment deposition rate is the driving factor of short-term metal accumulation in Fundy marshes. The value of salt marshes as a sink for metals may be enhanced by high sedimentation rates.  相似文献   

8.
Although grasshoppers are common salt marsh herbivores, we know little about geographic variation in their species composition. We documented latitudinal variation in species composition of the tettigoniid grasshopper fauna of Atlantic Coast salt marshes. Tettigoniids (N = 740 adults) were collected from the Spartina alterniflora zone of 31 salt marsh sites across a latitudinal range of 13.19° (Florida to Maine), with an additional 52 individuals collected from the Juncus roemerianus zone of low-latitude marshes for comparative purposes. Eight species were collected, but some were common only at a few sites or rare throughout the entire collection range. The tettigoniid community was dominated by Orchelimum fidicinium at low latitudes and Conocephalus spartinae at high latitudes. Several factors might explain this shift, including changes in climate, plant phenology, and plant zonation patterns. O. fidicinium and C. spartinae increased in body size toward low latitudes. In laboratory feeding assays, O. fidicinium readily ate S. alterniflora and J. roemerianus leaves, Orchelimum concinnum, which is largely restricted to the J. roemerianus zone, ate only J. roemerianus leaves, and Conocephalus spp. ate neither, consistent with literature suggestions that they mainly consume seeds and flowers. Geographic variation in species composition and body size of grasshoppers may help explain documented patterns of geographic variation in plant palatability and plant–herbivore interactions in Atlantic Coast salt marshes. Because it can be difficult to identify tettigoniids to species, we present a guide to aid future workers in identifying the tettigoniid species common in these marshes.  相似文献   

9.
Tidal freshwater sections of the Cooper River Estuary (South Carolina) include extensive wetlands, which were formerly impounded for rice culture during the 1,700s and 1,800s. Most of these former rice fields are now open to tidal exchange and have developed into productive wetlands that vary in bottom topography, tidal hydrography and vegetation dominants. The purpose of this project was to quantify nitrogen (N) transport via tidal exchange between the main estuarine channel and representative wetland types and to relate exchange patterns to the succession of vegetation dominants. We examined N concentration and mass exchange at the main tidal inlets for the three representative wetland types (submerged aquatic vegetation [SAV], floating leaf vegetation, and intertidal emergent marsh) over 18-21 tidal cycles (July 1998–August 2000). Nitrate + nitrite concentrations were significantly lower during ebb flow at all study sites, suggesting potential patterns of uptake by all wetland types. The magnitude of nitrate decline during ebb flow was negatively correlated with oxygen concentration, reflecting the potential importance of denitrification and nitrate reduction within hypoxic wetland waters and sediments. The net tidal exchange of nitrate + nitrite was particularly consistent for the intertidal emergent marsh, where flow-weighted ebb concentrations were usually 18–40% lower than during flood tides. Seasonal patterns for the emergent marsh indicated higher rates of nitrate + nitrite uptake during the spring and summer (> 400 μmol N m-2 tide-1) with an annual mean uptake of 248 ± 162 μmol m–2 tide–1. The emergent marsh also removed ammonium through most of the year (207 ± 109 μmol m–2 tide–1), and exported dissolved organic nitrogen (DON) in the fall (1,690 ± 793 μmol m–2 tide–1), suggesting an approximate annual balance between the dissolved inorganic N uptake and DON export. The other wetland types (SAV and floating leaf vegetation) were less consistent in magnitude and direction of N exchange. Since the emergent marsh site had the highest bottom elevation and the highest relative cover of intertidal habitat, these results suggest that the nature of N exchange between the estuarine waters and bordering wetlands is affected by wetland morphometry, tidal hydrography, and corresponding vegetation dominants. With the recent diversion of river discharge, water levels in the upper Cooper estuary have dropped more than 10 cm, leading to a succession of wetland communities from subtidal habitats toward more intertidal habitats. Results of this study suggest that current trends of wetland succession in the upper Cooper River may result in higher rates of system-wide inorganic N removal and DON inputs by the growing distributions of intertidal emergent marshes.  相似文献   

10.
Salt pools are water-filled depressions common to north-temperate salt marshes. In Wells, ME, USA, cores reveal a unique salt pool signature consisting of water-saturated dark-gray mud often containing fragments of Ruppia maritima. Cores through pool sediment reenter salt marsh peat, not tidal flat sediment, demonstrating that most pools are of secondary origin. A principal component analysis of attribute data collected from 119 pools defines three distinct pool types: those with (1) surrounding high-marsh vegetation and thick heavily undercut banks (40% of the variance), (2) surrounding low-marsh vegetation and thicker slightly undercut banks (18% of the variance), and (3) surrounding low-marsh vegetation and less thick moderately undercut banks, containing R. maritima and a surficial drainage (15% of the variance). Cores and spatiotemporal analyses of aerial photographs between 1962 and 2003 reveal dramatic salt marsh surface dynamism suggesting that salt pools influence the geomorphological evolution of coastal marshes.  相似文献   

11.
Delaware Bay is one of the largest estuaries on the U.S. eastern seaboard and is flanked by some of the most extensive salt marshes found in the northeastern U.S. While physicochemical and biotic gradients are known to occur along the long axis of the bay, no studies to date have investigated how the fish assemblage found in salt marsh creeks vary along this axis. The marshes of the lower portion of the bay, with higher salinity, are dominated bySpartina spp., while the marshes of the upper portion, with lower salinity, are currently composed primarily of common reed,Phragmites australis, S. alterniflora, or combinations of both. Extensive daytime sampling (n=815 tows) during May–November 1996 was conducted with otter trawls (4.9 m, 6 mm mesh) in six intertidal and subtidal marsh creek systems (upper and lower portions of each creek) where creek channel depths ranged from 1.4–2.8 m at high tide. The fish taxa of the marsh creeks was composed of 40 species that were dominated by demersal and pelagic forms including sciaenids (5 species), percichthyids (2), and clupeids (7), many of which are transients that spawn outside the bay but the early life history stages are abundant within the bay. The most abundant species wereMorone americana (24.3% of the total catch),Cynoscion regalis (15.4%),Micropogonias undulatus (15.3%),Anchoa mitchilli (12.0%), andTrinectes maculatus (10.8%). Non-metric Multi-Dimensional Scaling ordination of catch per unit effort (CPUE) data indicated two fish assemblages that were largely independent of the two major vegetation types, but generally corresponded with spatial variation in salinity. This relationship was more complex because some of the species for which we could discriminate different age classes by size had different patterns of distribution along the salinity gradient.  相似文献   

12.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

13.
We assess the status of channel networks and pools of two tidal salt marshes recovering from more than a century of agricultural reclamation on the Bay of Fundy, Canada. A process of largely unmanaged restoration occurred at these sites since abandonment of agricultural activities during the first half of the twentieth century. Each recovering marsh was compared to a reference marsh that was never drained or ditched. We field mapped channel networks at all marshes and used aerial photographs to map the pre-abandonment channel network at one of the sites. The recovering marshes have hybrid channel networks that feature highly variable channel morphologies, loss of original channels, and incorporation of drainage ditches. Although channel networks in recovering marshes integrate agricultural ditches, the recovering marsh networks may not be substantially increased in length or density. Our aerial photograph analysis shows that channel density at one of the recovering marshes is comparable to the pre-abandonment density, but with reduced sinuosity. Field mapping of permanent tidal pools on the lower Bay marshes revealed that pools cover 13% of the recovering marsh, compared to ∼5% of the reference marsh. This study demonstrates that these essential marsh features can be regained through restoration or simple abandonment of drainage infrastructure.  相似文献   

14.
Carbon entering the food web originating from microalgal productivity may be as important to salt marsh consumers as carbon originating from vascular plant production. The objective of this study was to further our understanding of the role played by microalgae in salt marshes. We focused on microalgal productivity, community dynamics, and pelagic food web linkages. Across three consecutive springs (2001–2003), we sampled the upper Nueces Delta in southeast Texas, United States; a shallow, turbid system of ponds and elevated vegetated areas stressed by low freshwater inflow and salinities ranging from brackish (11) to hypersaline (300). Despite high turbidity and low external nutrient loadings, microalgal productivity was on the order of that reported for vascular plants. Primary productivity in surface waters ranged from 0 to 2.02 g C m−2 d−1 and was usually higher than primary productivity associated with the benthos, which ranged from 0 to 1.14 g C m−2 d−1. This was likely due to high amounts of wind-driven resuspended sediment limiting production at greater depths. Most of the water column microalgal biovolume seemed to originate from the benthos and was comprised mostly of pennate diatoms. But true phytoplankton taxa were also observed, which included cryptomonads, chlorophyhtes dinoflagellates, and cyanobacteria. Succession from r-selected to K-selected taxa with the progression of spring, a common phenomena in aquatic systems, was not observed. Codominance by both potentially edible and less edible taxa was found. This was likely due to decreased grazing pressure on r-selected taxa as salinity conditions became unfavorable for grazers. In addition to a decoupled food web, reduced primary and net productivity, community respiration, and microalgal and zooplankton population densities were all observed at extreme salinities. Our findings suggest that a more accurate paradigm of salt marsh functioning within the landscape must account for microalgal productivity as well as production by vascular plants. Because the value of microalgal productivity to higher trophic levels is taxa specific, the factors that govern microalgal community structure and dynamics must also be accounted for. In the case for the Nueces Delta, these factors included wind mixing and increasing salinities.  相似文献   

15.
Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, andFundulus heteroclitus isotope values (δ13C, δ15N, δ34S) were examined to assess their use as indicators for changes in food web support functions in tidally-restored salt marshes. Study sites, located throughout the southern New England region (USA), ranged fromSpartina alterniflora-dominated reference marshes, marshes under various regimes and histories of tide restoration, and a severely tide-restrictedPhragmites australis marsh.Fundulus δ13C values were greater for fish from referenceSpartina marshes than for fish from adjacent tide-restricted or tide-restored marshes where higher percent cover of C3 plants, lower water column salinities, and more negative dissolved inorganic δ13C values were observed. The difference inFundulus δ13C values between a tide-restrictedPhragmites marsh and an adjacent referenceSpartina marsh was great compared to the difference between marshes at various stages of tide restoration and their respective reference marshes, suggesting that food web support functions are restored as the degree of tidal restriction is lessened. While a multiple isotopic approach can provide valuable information for determining specific food sources to consumers, this study demonstrates that monitoringFundulus δ13C values alone may be useful to evaluate the trajectory of ecological change for marshes undergoing tidal restoration.  相似文献   

16.
Tidal freshwater marshes exist at the interface between watersheds and estuaries, and thus may serve as critical buffers protecting estuaries from anthropogenic metal pollution. Bi-weekly samples of newly deposited marsh sediments were collected and analyzed for Cu, Zn, and Fe concentrations over 21 months from July 1995 to March 1997 in five distinct habitats at the head of Bush River, Maryland. Bi-weekly anthropogenic metal enrichments ranged from 0.9–4.7. Anthropogenic excess metal loadings averaged over 1996 ranged from 6–306 and 25–1302 μg cm−2 year−1 between sites for Cu and Zn, respectively. Based on Fe-normalized trace metal signatures, Susquehanna River sediment does not significantly contribute to upper Bush River. Organic matter was found to dilute total metal concentrations, whereas past studies suggested organics enhance labile metal content. Analysis of metal input pathways shows that marsh metals are primarily imported from nearby subtidal accumulations of historic watershed material by tidal flushing. Received: 29 April 1999 / Accepted: 7 December 1999  相似文献   

17.
To test whether invasive Spartina alterniflora marshes were functionally equivalent to native Scirpus mariqueter marshes, the present study used bottomless lift nets (20 m2) during 12 high-tide events from August to October 2008 to compare nekton densities and biomass between the two marsh types in the Dongtan wetland. A total of eight species of fish, two species of shrimp, and three species of crab were collected. So-iny mullet Chelon haematocheilus, keeled mullet Liza carinata, Asian freshwater goby Acanthogobius ommaturus, and ridge-tail prawn Exopalaemon carinicauda dominated samples from the two marsh types and accounted for over 90% of the total catch. There were significantly greater densities and biomass (p < 0.05) of total nekton (all species combined) and two mullets (C. haematocheilus and L. carinata) in S. alterniflora marshes than in S. mariqueter marshes in August 2008, while no significant differences (p > 0.05) between the two marsh types were observed for densities and biomass of any species or total nekton in September and October 2008. Non-metric multidimensional scaling ordination did not show clear separation of samples between the two marsh types (r = 0.071, p = 0.159). Furthermore, there were no habitat-specific differences (p > 0.05) in the size distributions of the three numerically dominant species (C. haematocheilus, L. carinata, and A. ommaturus). We concluded that S. alterniflora marshes were utilized by nekton in a fashion similar to their utilization of native S. mariqueter marshes under similar physical conditions.  相似文献   

18.
Marshes are important habitats for various life history stages of many fish and invertebrates. Much effort has been directed at restoring marshes, yet it is not clear how fish and invertebrates have responded to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs to marsh restoration by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molt stages of crabs in recently restored marshes that were former salt hay farms to that of adjacent reference marshes with similar physical characteristics in the mesohaline portion of Delaware Bay. Field sampling occurred monthly (April–November) in 1997 and 1998 using replicate daytime otter trawls in large marsh creeks and weirs in smaller intertidal marsh creeks. Blue crabs were either equal or more abundant, the incidence of molting was in most months similar, and population sex ratios were indistinguishable in restored and reference marshes, suggesting that the restored areas attract crabs and support their growth. Site location had a greater effect on the sex ratio of crabs such that marshes closer to the mouth of the bay contained a higher percentage of adult female crabs. In each annual growing season (April–July), the monthly increase in crab size and, in some months (June–July), the incidence of molting at the restored sites was greater than the reference sites, suggesting that the restored sites may provide areas for enhanced growth of crabs. These results suggest that blue crabs have responded positively to restoration of former salt hay farms in the mesohaline portion of Delaware Bay.  相似文献   

19.
Flooding of salt marshes controls access to the marsh surface for aquatic organisms and likely regulates the value and use of this habitat for juvenile fishery species. We examined geographic variability in marsh access by measuring tidal flooding characteristics in 15 Spartina alterniflora marshes in the southeastern US between South Texas and lower Chesapeake Bay. Flooding duration and flooding frequency were correlated with the elevation of the marsh edge in relation to mean low water and with the tidal range. Mean annual flooding duration over the years 2006–2008 was highest in Texas (91.5% in Aransas Bay) and North Carolina (89.3% in Pamlico Sound) and lowest in Timbalier Bay, LA (54%) and the lower Carolinas and Georgia (55–57%). We used published data on densities of blue crabs and penaeid shrimps as a measure of habitat selection, and there was a positive relationship between marsh selection and flooding duration.  相似文献   

20.
Fluxes of methane (CH4) and carbon dioxide (CO2) to the atmosphere at 52 sites within a salt marsh were measured by a dark static chamber technique from mid July to mid September. Mean CH4 fluxes ranged from 0.2 mg m?2 d?1 to 11.0 mg m?2 d?1, with an overall average of 1.6 mg m?2 d?1. Flux of CH4 was inversely correlated (r2=0.23, p = 0.001) with salinity of the upper porewater at the site, suggesting the dominant role of SO4 2? in inhibiting methanogenesis in salt-marsh sediments. The combination of salinity and water table position was able to explain only 29% of the variance in CH4 emission. Mean soil flux of CO2 ranged from 0.3 g m?2 d?1 to 3.7 g m?2 d?1, with an overall average of 2.5 g m?2 d?1; it was correlated with aboveground biomass (positive, r2=0.38, p = 0.001) and position of the water table (negative, r2 = 0.55, p = 0.001). The combination of biomass and water table position accounted for 63% of the variance in CO2 flux. There were high variations in gas flux within the six plant communities. The sequences were CH4: upland edge > panne > pool > middle marsh > low marsh > high marsh, and CO2: middle marsh > low marsh > upland edge > high marsh > panne > pool. Compared to other salt-marsh systems, this Bay of Fundy marsh emits small amounts of CH4 and CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号