首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The results of a systematic field mapping campaign at the Haughton impact structure have revealed new information about the tectonic evolution of mid‐size complex impact structures. These studies reveal that several structures are generated during the initial compressive outward‐directed growth of the transient cavity during the excavation stage of crater formation: (1) sub‐vertical radial faults and fractures; (2) sub‐horizontal bedding parallel detachment faults; and (3) minor concentric faults and fractures. Uplift of the transient cavity floor toward the end of the excavation stage produces a central uplift. Compressional inward‐directed deformation results in the duplication of strata along thrust faults and folds. It is notable that Haughton lacks a central topographic peak or peak ring. The gravitational collapse of transient cavity walls involves the complex interaction of a series of interconnected radial and concentric faults. While the outermost concentric faults dip in toward the crater center, the majority of the innermost faults at Haughton dip away from the center. Complex interactions between an outward‐directed collapsing central uplift and inward collapsing crater walls during the final stages of crater modification resulted in a structural ring of uplifted, intensely faulted (sub‐) vertical and/or overturned strata at a radial distance from the crater center of ?5.0–6.5 km. Converging flow during the collapse of transient cavity walls was accommodated by the formation of several structures: (1) sub‐vertical radial faults and folds; (2) positive flower structures and chaotically brecciated ridges; (3) rollover anticlines in the hanging‐walls of major listric faults; and (4) antithetic faults and crestal collapse grabens. Oblique strike‐slip (i.e., centripetal) movement along concentric faults also accommodated strain during the final stages of readjustment during the crater modification stage. It is clear that deformation during collapse of the transient cavity walls at Haughton was brittle and localized along discrete fault planes separating kilometer‐size blocks.  相似文献   

2.
Abstract— Surface and subsurface structural studies undertaken under the Haughton impact structure study (HISS) project indicate that the 23 Ma-old Haughton impact structure, (Devon Island, Canadian Arctic) consists of a central basin of uplifted strata, an inner zone of uplifted megablocks at 3.5–5.5 km radius, a complex, faulted annulus of megablocks at 5.5–7.0 km radius and an outer zone of downfaulted blocks. No evidence of a previously suggested structural multi-ring form was found. The geophysical studies suggest an original diameter of 24 km, slightly larger than previous estimates and the seismic data indicate considerably more faulting in the western portion than has been mapped from surface exposures. Detailed studies of the allochthonous breccia deposits found no major radial variations in lithology and shock levels. The only anomaly is the concentration of highly shocked, cobble-sized clasts in the central area coincident with the maximum gravity and magnetic anomalies. It is suggested that this local component is related to the highly shocked rocks of the central uplift and may have been shed from the uplift during late stage adjustments. There is no visible central topographic peak of uplifted bedrock at Haughton but studies of the post-impact Haughton Formation suggest that the center of the structure subsided 300–350 m soon after formation. Breccia studies also indicate the occurrence of shock-melted sediments, including shales, but no evidence of shock melted carbonates, the most common target lithology. This may be ascribed to the ease with which carbonates are volatilized by relatively moderate shock levels. The large amount of volatiles released on impact helped disperse the highly shocked products leading to the formation of a relatively cool clastic and polymict breccia deposit in the interior, as opposed to a coherent melt sheet. In this regard, the breccia deposit is somewhat analogous to the suevite deposits within the Ries crater. Sedimentological studies indicate that the Cretaceous-age Eureka Sound Formation was present at the time of impact and that the Haughton area has undergone as much as 200 m of erosion since the time of impact.  相似文献   

3.
Abstract— The 40 km wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward‐verging inclined folds and a km‐scale anticline in the outer ring of the structure. The folding stage was followed by radial and concentric faulting, with downward displacement of kilometer‐scale blocks around the crater rim. The central uplift records evidence for km‐scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached from the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km‐scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward‐plunging radial folds indicate tangential oblate shortening of the strata during the imbrication of the thrust sheets. Each individual sheet records an early stage of folding and thickening due to non‐coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer‐scale inward movement of the target strata from the transient cavity walls to the central uplift. The outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10–12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks.  相似文献   

4.
Abstract— The results of a new gravity survey show that the Haughton impact structure is associated with a 24 km diameter negative Bouguer gravity anomaly with a maximum amplitude of ?12 mgal. A local minimum with a half-width of 2 km and an amplitude of ?4 mgal is located at the center of the structure. A positive magnetic total field anomaly with a half-width of 0.6 km and an amplitude of 700 nT coincides with the local central gravity anomaly. The overall negative gravity anomaly is explained by lowered rock densities due to impact-related fracturing in the crater area. The central gravity and magnetic anomalies are believed to be due to highly shocked and heated sedimentary and crystalline basement rocks forming the unexposed peak of the central uplift in the Haughton impact structure.  相似文献   

5.
Abstract— The Haughton impact structure has been the focus of systematic, multi‐disciplinary field and laboratory research activities over the past several years. Regional geological mapping has refined the sedimentary target stratigraphy and constrained the thickness of the sedimentary sequence at the time of impact to ?1880 m. New 40Ar–39Ar dates place the impact event at ?39 Ma, in the late Eocene. Haughton has an apparent crater diameter of ?23 km, with an estimated rim (final crater) diameter of ?16 km. The structure lacks a central topographic peak or peak ring, which is unusual for craters of this size. Geological mapping and sampling reveals that a series of different impactites are present at Haughton. The volumetrically dominant crater‐fill impact melt breccias contain a calcite‐anhydrite‐silicate glass groundmass, all of which have been shown to represent impact‐generated melt phases. These impactites are, therefore, stratigraphically and genetically equivalent to coherent impact melt rocks present in craters developed in crystalline targets. The crater‐fill impactites provided a heat source that drove a post‐impact hydrothermal system. During this time, Haughton would have represented a transient, warm, wet microbial oasis. A subsequent episode of erosion, during which time substantial amounts of impactites were removed, was followed by the deposition of intra‐crater lacustrine sediments of the Haughton Formation during the Miocene. Present‐day intra‐crater lakes and ponds preserve a detailed paleoenvironmental record dating back to the last glaciation in the High Arctic. Modern modification of the landscape is dominated by seasonal regional glacial and niveal melting, and local periglacial processes. The impact processing of target materials improved the opportunities for colonization and has provided several present‐day habitats suitable for microbial life that otherwise do not exist in the surrounding terrain.  相似文献   

6.
Abstract— The well‐preserved state and excellent exposure at the 39 Ma Haughton impact structure, 23 km in diameter, allows a clearer picture to be made of the nature and distribution of hydrothermal deposits within mid‐size complex impact craters. A moderate‐ to low‐temperature hydrothermal system was generated at Haughton by the interaction of groundwaters with the hot impact melt breccias that filled the interior of the crater. Four distinct settings and styles of hydrothermal mineralization are recognized at Haughton: a) vugs and veins within the impact melt breccias, with an increase in intensity of alteration towards the base; b) cementation of brecciated lithologies in the interior of the central uplift; c) intense veining around the heavily faulted and fractured outer margin of the central uplift; and d) hydrothermal pipe structures or gossans and mineralization along fault surfaces around the faulted crater rim. Each setting is associated with a different suite of hydrothermal minerals that were deposited at different stages in the development of the hydrothermal system. Minor, early quartz precipitation in the impact melt breccias was followed by the deposition of calcite and marcasite within cavities and fractures, plus minor celestite, barite, and fluorite. This occurred at temperatures of at least 200 °C and down to ?100–120 °C. Hydrothermal circulation through the faulted crater rim with the deposition of calcite, quartz, marcasite, and pyrite, occurred at similar temperatures. Quartz mineralization within breccias of the interior of the central uplift occurred in two distinct episodes (?250 down to ?90 °C, and <60 °C). With continued cooling (<90 °C), calcite and quartz were precipitated in vugs and veins within the impact melt breccias. Calcite veining around the outer margin of the central uplift occurred at temperatures of ?150 °C down to <60 °C. Mobilization of hydrocarbons from the country rocks occurred during formation of the higher temperature calcite veins (>80 °C). Appreciation of the structural features of impact craters has proven to be key to understanding the distribution of hydrothermal deposits at Haughton.  相似文献   

7.
Abstract— Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earth's surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first “Bridging the Gap” workshop recommended that geological observation and numerical modeling focussed on mid‐sized (15–30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18–26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first‐order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid‐sized complex crater formation in a subaerial, mixed crystalline‐sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre‐impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post‐impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness.  相似文献   

8.
Abstract— This study serves as a proof‐of‐concept for the technique of using visible‐near infrared (VNIR), short‐wavelength infrared (SWIR), and thermal infrared (TIR) spectroscopic observations to map impact‐exposed subsurface lithologies and stratigraphy on Earth or Mars. The topmost layer, three subsurface layers and undisturbed outcrops of the target sequence exposed just 10 km to the northeast of the 23 km diameter Haughton impact structure (Devon Island, Nunavut, Canada) were mapped as distinct spectral units using Landsat 7 ETM+ (VNIR/SWIR) and ASTER (VNIR/SWIR/TIR) multispectral images. Spectral mapping was accomplished by using standard image contrast‐stretching algorithms. Both spectral matching and deconvolution algorithms were applied to image‐derived ASTER TIR emissivity spectra using spectra from a library of laboratory‐measured spectra of minerals (Arizona State University) and whole‐rocks (Ward's). These identifications were made without the use of a priori knowledge from the field (i.e., a “blind” analysis). The results from this analysis suggest a sequence of dolomitic rock (in the crater rim), limestone (wall), gypsum‐rich carbonate (floor), and limestone again (central uplift). These matched compositions agree with the lithologic units and the pre‐impact stratigraphic sequence as mapped during recent field studies of the Haughton impact structure by Osinski et al. (2005a). Further conformation of the identity of image‐derived spectra was confirmed by matching these spectra with laboratory‐measured spectra of samples collected from Haughton. The results from the “blind” remote sensing methods used here suggest that these techniques can also be used to understand subsurface lithologies on Mars, where ground truth knowledge may not be generally available.  相似文献   

9.
Abstract— The western flank of the Haughton impact structure was imaged with a reflection profile generating 9.8 km of subsurface information. Ten reflecting horizons were recognized and have been correlated via a sonic log with the Paleozoic limestone/dolomite rock sequences. The seismic section is dominated by a dense and complex compound fault system with variable attitudes. These steeply dipping faults penetrated the sedimentary rocks but showed no recognizable extension into the crystalline basement. According to the seismically recognized fracture zones of the western margin, the structure is significantly larger than previously estimated. Reconstruction of the crater on the basis of the seismic information and existing scaling relationships reveals a structure with an apparent diameter of 23.9 km, and an excavated cavity of 10.3 km width and 1.97 km depth. The estimated diameters of the transient crater and the central uplift are 12 km and 11 km respectively. The morphologically distinct ring zones do not have seismically recognizable subsurface signatures. The underlying crystalline basement rocks did not exhibit seismically mappable impact-related zones of disturbance. In the central interior region, coherent reflection signals are virtually absent. Valuable information for this area was provided by a 10.26 km long refraction profile that indicated nearly uniform velocities (~5000 m/s) to a considerable depth. Major lateral variations in the velocity field across the structure were not detected.  相似文献   

10.
The 26 km diameter Nördlinger Ries is a complex impact structure with a ring structure that resembles a peak ring. A first research drilling through this “inner crystalline ring” of the Ries was performed at the Erbisberg hill (SW Ries) to better understand the internal structure and lithology of this feature, and possibly reveal impact‐induced hydrothermal alteration. The drill core intersected the slope of a 22 m thick postimpact travertine mound, before entering 42 m of blocks and breccias of crystalline rocks excavated from the Variscan basement at >500 m depth. Weakly shocked gneiss blocks that show that shock pressure did not exceed 5 GPa occur above polymict lithic breccias of shock stage Ia (10–20 GPa), with planar fractures and planar deformation features (PDFs) in quartz. Only a narrow zone at 49.20–50.00 m core depth exhibits strong mosaicism in feldspar and {102} PDFs in quartz, which are indicative of shock stage Ib (20–35 GPa). Finally, 2 m of brecciated Keuper sediments at the base of the section point to an inverse layering of strata. While reverse grading of clast sizes in lithic breccias and gneiss blocks is consistent with lateral transport, the absence of diaplectic glass and melt products argues against dynamic overthrusting of material from a collapsing central peak, as seen in the much larger Chicxulub structure. Indeed, weakly shocked gneiss blocks are rather of local provenance (i.e., the transient crater wall), whereas moderately shocked polymict lithic breccias with geochemical composition and 87Sr/86Sr signature similar to Ries suevite were derived from a position closer to the impact center. Thus, the inner ring of the Ries is formed by moderately shocked polymict lithic breccias likely injected into the transient crater wall during the excavation stage and weakly shocked gneiss blocks of the collapsing transient crater wall that were emplaced during the modification stage. While the presence of an overturned flap is not evident from the Erbisberg drilling, a survey of all drillings at or near the inner ring point to inverted strata throughout its outer limb. Whether the central ring of the Ries represents remains of a collapsed central peak remains to be shown. Postimpact hydrothermal alteration along the Erbisberg section comprises chloritization, sulfide veinlets, and strong carbonatization. In addition, a narrow zone in the lower parts of the polymict lithic breccia sequence shows a positive Eu anomaly in its carbonate phase. The surface expression of this hydrothermal activity, i.e., the travertine mound, comprises subaerial as well as subaquatic growth phases. Intercalated lake sediments equivalent to the early parts of the evolution of the central crater basin succession confirm a persistent impact‐generated hydrothermal activity, although for less time than previously suggested.  相似文献   

11.
Abstract— Detailed field mapping has revealed the presence of a series of intra‐crater sedimentary deposits within the interior of the Haughton impact structure, Devon Island, Canadian High Arctic. Coarse‐grained, well‐sorted, pale gray lithic sandstones (reworked impact melt breccias) unconformably overlie pristine impact melt breccias and attest to an episode of erosion, during which time significant quantities of impact melt breccias were removed. The reworked impact melt breccias are, in turn, unconformably overlain by paleolacustrine sediments of the Miocene Haughton Formation. Sediments of the Haughton Formation were clearly derived from pre‐impact lower Paleozoic target rocks of the Allen Bay Formation, which form the crater rim in the northern, western, and southern regions of the Haughton structure. Collectively, these field relationships indicate that the Haughton Formation was deposited up to several million years after the formation of the Haughton crater and that they do not, therefore, represent an immediate, post‐impact crater lake deposit. This is consistent with new isotopic dating of impactites from Haughton that indicate an Eocene age for the impact event (Sherlock et al. 2005). In addition, isolated deposits of post‐Miocene intra‐crater glacigenic and fluvioglacial sediments were found lying unconformably over remnants of the Haughton Formation, impact melt breccias, and other pre‐impact target rock formations. These deposits provide clear evidence for glaciation at the Haughton crater. The wealth and complexity of geological and climatological information preserved as intra‐crater deposits at Haughton suggests that craters on Mars with intra‐crater sedimentary records might present us with similar opportunities, but also possibly significant challenges.  相似文献   

12.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

13.
Abstract— Although mapped initially as a piercement dome, subsequent discovery of shock metamorphism in clasts of an impact breccia, shatter cones in outcrops of uplifted target rocks and morphological and geophysical characteristics consistent with a complex crater, confirmed a meteorite impact origin for the Haughton structure, Devon Island. Results of three field investigations carried out prior to 1984 defined a complex crater, 20 km in diameter, formed in a lower Paleozoic sedimentary sequence overlying gneisses of the Precambrian basement. The distribution of allochthonous breccia overlying the disturbed target rocks and of the sediments deposited in the crater-filling lake were mapped. A Miocene or possibly Holocene age for the crater was based on paleo-flora and fauna assemblages from the lake sediments. Gravity and magnetic surveys revealed anomalies coincident with the crater, but not interpretable from surface lithologies. Some of the early investigations were of a reconnaissance nature and results and interpretation can only be considered preliminary. Other studies that were carried out in some detail, petrographic investigations in particular, require complementary work for a fuller understanding of their significance. As a result, in 1984 the HISS (Haughton Impact Structure Studies) group carried out a program of detailed geological mapping and sampling, and seismic, gravity, and magnetic surveys in an attempt to improve the definition of the surface and subsurface nature of Haughton, and to formulate a more complete understanding of its formation and subsequent history. Results of these various studies are presented in the eight succeeding papers of this volume.  相似文献   

14.
We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37′N 45°39′E) using satellite imagery, field mapping, thin‐section petrography, and X‐ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat‐lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz‐rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea‐ or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward‐dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat‐lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.  相似文献   

15.
Abstract As part of the ICDP Chicxulub Scientific Drilling Project, the Yaxcopoil‐1 (Yax‐1) bore hole was drilled 60 km south‐southwest of the center of the 180 km‐diameter Chicxulub impact structure down to a depth of 1511 m. A sequence of 615 m of deformed Cretaceous carbonates and sulfates was recovered below a 100 m‐thick unit of suevitic breccias and 795 m of post‐impact Tertiary rocks. The Cretaceous rocks are investigated with respect to deformation features and shock metamorphism to better constrain the deformational overprint and the kinematics of the cratering process. The sequence displays variable degrees of impact‐induced brittle damage and post‐impact brittle deformation. The degree of tilting and faulting of the Cretaceous sequence was analyzed using 360°‐core scans and dip‐meter log data. In accordance with lithological information, these data suggest that the sedimentary sequence represents a number of structural units that are tilted and moved with respect to each other. Three main units and nine sub‐units were discriminated. Brittle deformation is most intense at the top of the sequence and at 1300–1400 m. Within these zones, suevitic dikes, polymict clastic dikes, and impact melt rock dikes occur and may locally act as decoupling horizons. The degree of brittle deformation depends on lithology; massive dolomites are affected by penetrative faulting, while stratified calcarenites and bituminous limestones display localized faulting. The deformation pattern is consistent with a collapse scenario of the Chicxulub transient crater cavity. It is believed that the Cretaceous sequence was originally located outside the transient crater cavity and eventually moved downward and toward the center to its present position between the peak ring and the crater rim, thereby separating into blocks. Whether or not the stack of deformed Cretaceous blocks was already displaced during the excavation process remains an open question. The analysis of the deformation microstructure indicates that a shock metamorphic overprint is restricted to dike injections with an exception of the so called “paraconglomerate.” Abundant organic matter in the Yax‐1 core was present before the impact and was mobilized by impact‐induced heating and suggests that >12 km3 of organic material was excavated during the cratering process.  相似文献   

16.
Abstract— After the impact that formed Haughton crater, 22.4 ± 1.4 Ma ago (early Miocene), the cavity filled with water and began to accumulate lacustrine sediments. These preserve detailed evidence of pre-impact stratigraphy and post-impact morphology and development of the crater, as well as of the climatic and biotic regime in which it lay. In this report we formally designate these sediments as the Haughton Formation, of which only a 48 m thick remnant covering approximately 7 km2 still exists. Dolomite-rich, poorly-sorted silt, fine sand, and mud are the principal lithologies. The formation unconformably overlies a blanket of allochthonous impact breccia forming the floor of the original crater. Presence of a debris-flow deposit in the base of the sequence indicates that lacustine deposition began very shortly after crater formation. The Haughton Formation contains a moderately diverse and highly endemic vertebrate fauna as well as palynomorphs and plant macrofossils that indicate a cool-temperate climatic regime. A small percentage of reworked Late Cretaceous and early Tertiary palynomorphs point to the former existence of the Eureka Sound Formation in the drainage area of the crater. In addition, the distribution of the lake beds indicates the absence of an inner ring on the west side of the crater, and the 3° to 3.5° inward dip of Haughton strata implies that the central mass has subsided approximately 300 to 350 m since deposition began.  相似文献   

17.
The Ries crater is a well‐preserved, complex impact crater that has been extensively used in the study of impact crater formation processes across the solar system. However, its geologic structure, especially the megablock zone, still poses questions regarding crater formation mechanics. The megablock zone, located between the inner crystalline ring and outer, morphologic crater rim, consists of allochthonous crystalline and sedimentary blocks, Bunte Breccia deposits, patches of suevite, and parautochthonous sedimentary blocks that slumped into the crater during crater modification. Our remote sensing detection method in combination with a shallow drilling campaign and geoelectric measurements at two selected megablocks proved successful in finding new megablock structures (>25 m mean diameter) within the upper approximately 1.5 m of the subsurface in the megablock zone. We analyzed 1777 megablocks of the megablock zone, 81 of which are new discoveries. In our statistical analysis, we also included 2318 ejecta blocks >25 m beyond the crater rim. Parautochthonous megablocks show an increase in total area and size toward the final crater rim. The sizes of allochthonous megablocks generally decrease with increasing radial range, but inside the megablock zone, the coverage with postimpact sediments obscures this trend. The size‐frequency distribution of all megablocks obeys a power‐law distribution with an exponent between approximately ?1.7 and ?2.3. We estimated a total volume of 95 km3 of Bunte Breccia and 47 km3 of megablocks. Ejecta volume calculations and a palinspastic restoration of the extension within the megablock zone indicate that the transient cavity diameter was probably 14–15 km.  相似文献   

18.
Abstract— Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact‐generated rocks following formation of the 24 km diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact‐generated concentric fault systems. The intra‐breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault‐related hydrothermal alteration occurs in 1–7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz‐carbonate breccia showing pronounced Fe‐hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 °C), with the precipitation of quartz (vapor phase dominated); (2) Main Stage (200‐100 °C), with the development of a two‐phase (vapor plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation; and (3) Late Stage (<100 °C), with selenite and fibroferrite development through liquid phase‐dominated precipitation. We estimate that it took several tens of thousands of years to cool below 50 °C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.  相似文献   

19.
Abstract— The central uplift of the 40-km wide Araguainha impact structure, Brazil, consists of a ring, about 8 km in diameter, of up to 150-m high blocks of Devonian Furnas sandstone, which surround a central depression of elliptical shape (4.5 × 3.0 km). The depression is occupied by a pre-Devonian alkali-feldspar granite, shocked by pressures of 20–25 GPa and permeated by cataclastic shear zones and dikes of shocked granitic material. The granite is flanked and partly covered by several impact breccias: (1) Impact breccia with melt matrix overlies the granite in places and forms hills, bordering the granitic center in the S and SW. It is chemically identical with the granite and consists of thermally altered granitic clasts in a matrix of sanidine, quartz, biotite, muscovite, chlorite and riebeckite. (2) Polymict breccias form hills which border the central depression in the N and NW. Components are unshocked and shocked sediments, shock-melted sandstone, shocked granite and shock melt rocks in irregular masses and individual bodies, embedded in a fine-grained matrix. 40Ar/39Ar analyses show that the melt rocks solidified 246 Ma ago, indicating that the impact occurred at near the Permian-Triassic boundary, possibly when the area was covered by a shallow sea. The present chemistry and petrography of the melt rocks suggest that by reacting with seawater granitic impact melt was depleted of K and Rb and enriched in Na, and that later diagenetic processes produced replacement of feldspar by quartz and deposition of hematite. (3) Monomict breccias, consisting of unshocked, shocked and shock-fused quartz sandstones, form hills which surround the central depression in the SE and S. The Araguainha structure is an eroded complex crater, produced by an impact, 246 Ma ago. The depth of excavation was about 2.4 km, comprising Permian, Permo-Carboniferous and Devonian sediments and the granitic basement. The diameter of the transient crater was about 24 km. Erosion and weathering have removed most of the original crater fill and ejecta deposits, with the exception of remnants, preserved in the central uplift.  相似文献   

20.
Abstract— Our current understanding of marine‐impact cratering processes is partly inferred from the geological structure of the Lockne crater. We present results of a mapping campaign and structural data indicating that this crater is not pristine. In the western part of the crater, pre‐impact, impact, and post‐impact rocks are incorporated in Caledonian thrust slices and are subjected to folding and faulting. A nappe outlier in the central crater depression is a relic of the Caledonian nappe cover that reached a thickness of more than 5 km. The overthrusted crater is gently deformed. Strike of strata and trend of fold axes deviate from standard Caledonian directions (northeast‐southwest). Radially oriented crater depressions, which were previously regarded as marine resurge gullies formed when resurging seawater erosively cut through the crater brim, are interpreted to be open synclines in which resurge deposits were better preserved. The presence of the impact structure influenced orogenesis due to morphological and lithological anomalies of the crater: i) a raised crater brim zone acted as an obstacle during nappe propagation, (ii) the occurrence of a central crater depression caused downward sagging of nappes, and (iii) the lack of an appropriate detachment horizon (alum shale) within the crater led to an enhanced mechanical coupling and internal deformation of the nappe and the overthrusted foreland. Preliminary results of 3‐D‐analogue experiments suggest that a circular high‐friction zone representing the crater locally hinders nappe propagation and initiates a circumferentially striking ramp fault that delineates the crater. Crustal shortening is also partitioned into the crater basement and decreases laterally outward. Deformation of the foreland affected the geometry of the detachment and could be associated with the activation of a deeper detachment horizon beneath the crater. Strain gradients both vertically and horizontally result in non‐plane strain deformation in the vicinity of the crater. The strain tensors in the hanging and foot walls may deviate up to 90° from each other and rotated by up to 45° with respect to the standard regional orientation. The observed deflection of strata and fold axes within the Lockne crater area as revealed by field mapping is in agreement with the pattern of strain partitioning shown in the analogue models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号