首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Late Weichselian glaciation history of the northern North Sea   总被引:8,自引:1,他引:8  
Based on new data from the Fladen, Sleipner and Troll areas, combined with earlier published results, a glaciation curve for the Late Weichselian in the northern North Sea is constructed. The youngest date on marine sedimentation prior to the late Weichselian maximum ice extent is 29.4 ka BP. At this time the North Sea and probably large parts of southern Norway were deglaciated (corresponding to the Alesund interstadial in western Norway). In a period between 29.4 and c. 22 ka BP, the northern North Sea experienced its maximum Weichselian glaciation with a coalescing British and Scandinavian ice sheet. The first recorded marine inundation is found in the Fladen area where marine sedimentation started close to 22 ka BP. After this the ice fronts receded both to the east and west. The North Sea Plateau, and possibly parts of the Norwegian Trench, were ice-free close to 19.0 ka, and after this a short readvance occurred in this area. This event is correlated with the advance recorded at Dimlington, Yorkshire, and the corresponding climatostratigraphic unit is denoted the Dimlington Stadial (18.5 ka to 15.1 ka). The Norwegian Trench was deglaciated at 15.1 ka in the Troll area. The data from the North Sea, together with the results from Andwa, northern Norway (Vorren et al . 1988; Møller et al . 1992), suggest that the maximum extent of the last glaciation along the NW-European seaboard from the British Isles to northern Norway was prior to c . 22 ka BP.  相似文献   

2.
Palaeoglaciological reconstructions of the North Sea sector of the last British Ice Sheet have, as other shelf areas, suffered from a lack of dates directly related to ice‐front positions. In the present study new high‐resolution TOPAS seismic data, bathymetric records and sediment core data from the Witch Ground Basin, central North Sea, were compiled. This compilation made it possible to map out three ice‐marginal positions, partly through identification of terminal moraines and partly through location of glacial‐fed debrisflows. The interfingering of the distal parts of the glacial‐fed debrisflows with continuous marine sedimentation enabled the development of a chronology for glacial events based on previously published and some new radiocarbon dates on marine molluscs and foraminifera. From these data it is suggested that after the central Witch Ground Basin was deglaciated at c. 27 cal. ka BP, the eastern part was inundated by glacial ice from the east in the Tampen advance at c. 21 cal. ka BP. Subsequently, the basin was inundated by ice from northeast during the Fladen 1 (c. 17.5 cal. ka BP) and the Fladen 2 (16.2 cal. ka BP) events. It should be emphasized that the Fladen 1 and 2 events, individually, may represent dynamics of relatively small lobes of glacial ice at the margin of the British Ice Sheet and that the climatic significance of these may be questioned. However, the Fladen Events probably correlate in time with the Clogher Head and Killard Point re‐advances previously documented from Ireland and the Bremanger event from off western Norway, suggesting that the British and Fennoscandian ice sheets both had major advances in their northwestern parts, close to the northwestern European seaboard, at this time.  相似文献   

3.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

4.
Using extensive data sets from three separate areas in the German North Sea sector, consisting of seismic grids, cores and in‐situ cone penetration tests (CPT), we have established a revised stratigraphical framework for the mid to late Quaternary deposits of the German North Sea sector. This framework consists of four regional unconformities and 15 other local unconformities derived from seismic profiles. Using these unconformities, along with lithological and geotechnical data, it was possible to define and correlate 14 major units and 21 subunits within the framework. The Quaternary cover in the area is characterized by a variety of environmental settings ranging from glacial terrestrial and fluvial to lacustrine as well as brackish and marine environments with associated erosion, reworking and deposition. The complexity of Quaternary deposits within the area is explained by its history of repeated ice advances interrupted by marine transgressions and exposed periglacial landscapes. Within the framework, eight buried tunnel valleys and two shallow buried river valleys are identified from seismic profiles with four phases of tunnel valley generation inferred. These phases of tunnel valley generation are associated with the Elsterian (three) and Saalian (one) glacial stages. Infill of these tunnel valleys consists of glaciofluvial sands, thick sequences of marine and lacustrine fine‐grained sediments and some reworked till remnants. Elsewhere, extensive tabular units have formed consisting of marine and fluvial sediments. We compare this new stratigraphy with previous stratigraphies for the German North Sea sector, attribute informal stratigraphical names and offer preliminary correlations with established stratigraphies from other sectors of the North Sea.  相似文献   

5.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   

6.
The most complete terrestrial sequence of Anglian (Elsterian) glacial sediments in western Europe was investigated in northeast Norfolk, England in order to reconstruct the evolution of the contemporary palaeoenvironments. Lithostratigraphically the glacial sediments in the northeast Norfolk coastal cliffs can be divided into the Northn Sea Drift and Lowestoft Till Formations. Three of the diamicton members of the North Sea Drift Formation (Happisburgh, Walcott and Cromer Diamictons) were deposited as lodgement and/or subglacial deformation till by grounded ice, but one, the Mundesley Diamicton, is waterlain and was deposited in an extensive glacial lake. Sands and fine sediments interbedded between the diamictons represent deltaic sands and glaciolacustrine sediments derived not solely from the melting ice in the north but also from extra-marginal rivers in the south. The Lowestoft Till Formation is not well preserved in the cliffs but includes lodgement till (Marly Drift till) and, most probably, associated meltwater deposits. Extensive glaciotectonism in the northern part of the area is shown to relate to oscillating ice that deposited the Cromer Diamicton and also partially to the ice sheet that deposited the Marly Drift till. It is suggested that during the Anglian Stage the present day northeast Norfolk coast was situated on the northwestern margin of an extensive glaciolacustrine basin. This basin was dammed by the Scandinavian ice sheet in the north and northeast. Because the grounding line of this ice sheet oscillated in space and time, part of the North Sea Drift diamictons were deposited directly by this ice. However, during ice retreat phases glaciolacustrine deposition comprised waterlain diamicton, sands and fines. When the Scandinavian ice sheet was situated in northernmost Norfolk, the British ice sheet (responsible for depositing the Marly Drift facies) entered the area from the west. This ice sheet partially deformed the North Sea Drift Formation sediments in the northern part of the area but not in the south, where the British ice sheet apparently terminated in water. The interplay of these two ice sheets on the northern and western margins of the glacial lake is thought to be the major determining factor for the accumulation of thick glacial deposits in this area during the Anglian glaciation.  相似文献   

7.
Despite a long history of investigation, critical issues regarding the last glacial cycle in northwest Europe remain unresolved. One of these refers to the extent, timing and dynamics of Late Devensian/Weichselian glaciation of the North Sea Basin, and whether the British and Scandinavian ice sheets were confluent at any time during this period. This has been the result of the lack of the detailed sedimentological data required to reconstruct processes and environment of sediments recovered through coring. This study presents the results of seismic, sedimentological and micromorphological evidence used to reconstruct the depositional processes of regionally extensive seismic units across the North Sea Basin. Thin section micromorphology is used here to provide an effective means of discriminating between subglacial and glacimarine sediments from cored samples and deriving process‐based interpretations from sediment cores. On the basis of micromorphology, critical formations from the basin have been reinterpreted, with consequent stratigraphic implications. Within the current stratigraphic understanding of the North Sea Basin, a complex reconstruction is suggested, with a minimum of three major glacial episodes inferred. On at least two occasions during the Weichselian/Devensian, the British and Scandinavian ice sheets were confluent in the central North Sea. Whilst micromorphology can provide much greater confidence in the interpretation of Late Quaternary offshore stratigraphic sequences, it is noted that a much better geochronology is required to resolve key stratigraphic issues between the onshore and offshore stratigraphic records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
现代珠江三角洲地区QZK4孔第四纪沉积年代   总被引:2,自引:2,他引:0  
在地质环境变迁迅速的现代珠江三角洲地区,对于第四纪沉积的年代存在多种认识。结合南中国海的海平面变化记录,通过AMS14C和光释光测年发现,珠江三角洲腹地QZK4孔第四纪岩心底部最老年龄约为43.71ka BP。岩心记录的第四纪环境对南中国海海平面变化有着良好的响应:岩心下部陆相河流沉积和暴露风化层发育于末次冰期至早全新世的低海平面时期,上部滨海—河口湾沉积发育于早中全新世以来的高海平面时期。根据钻孔岩心的环境分析,推测现代珠江三角洲地区第四纪的底界可能较本钻孔记录的更老。  相似文献   

9.
Thirteen samples from three cores and boreholes are examined using micromorphology to test existing interpretations of Late Quaternary sedimentary sequences from the Norwegian Channel, North Sea Fan and the North Sea Plateau. Previous studies have interpreted these sediments using arbitrary parameters as reflecting Late Weichselian subglacial and glacimarine conditions associated with the Scandinavian Ice Sheet and Norwegian Channel ice stream. This study develops existing micromorphological criteria to interpret the samples as reflecting specific processes of subglacial deformation and proximal and distal glacimarine sedimentation during and subsequent to the Last Glacial Maximum. The study concludes by outlining diagnostic criteria for the identification of these sediment types from core and borehole samples of other Quaternary sediments.  相似文献   

10.
The deglacial history of the central sector of the last British–Irish Ice Sheet is poorly constrained, particularly along major ice‐stream flow paths. The Tyne Gap Palaeo‐Ice Stream (TGIS) was a major fast‐flow conduit of the British–Irish Ice Sheet during the last glaciation. We reconstruct the pattern and constrain the timing of retreat of this ice stream using cosmogenic radionuclide (10Be) dating of exposed bedrock surfaces, radiocarbon dating of lake cores and geomorphological mapping of deglacial features. Four of the five 10Be samples produced minimum ages between 17.8 and 16.5 ka. These were supplemented by a basal radiocarbon date of 15.7 ± 0.1 cal ka BP, in a core recovered from Talkin Tarn in the Brampton Kame Belt. Our new geochronology indicates progressive retreat of the TGIS from 18.7 to 17.1 ka, and becoming ice free before 16.4–15.7 ka. Initial retreat and decoupling of the TGIS from the North Sea Lobe is recorded by a prominent moraine 10–15 km inland of the present‐day coast. This constrains the damming of Glacial Lake Wear to a period before ∼18.7–17.1 ka in the area deglaciated by the contraction of the TGIS. We suggest that retreat of the TGIS was part of a regional collapse of ice‐dispersal centres between 18 and 16 ka.
  相似文献   

11.
As the majority of the data on Quaternary sediments from the North Sea Basin are seismostratigraphical, we analysed the Elsterian Swarte Bank Formation, the Late Saalian Fisher Formation and the Late Weichselian (Dimlington Stadial) Bolders Bank Formation in order to determine genesis and provenance. The Swarte Bank Formation is a subglacial till containing palynomorphs from the Moray Forth and the northeastern North Sea, and metamorphic heavy minerals from the Scottish Highlands. The Fisher Formation was sampled from the northern and central North Sea. In the north, it is interpreted as a subglacial till, with glaciomarine sediments cropping out further south. These sediments exhibit a provenance signature consistent with the Midland Valley of Scotland, the Eocene of the North Sea Basin, the Grampian Highlands and northeast Scotland. The Bolders Bank Formation is a subglacial till containing palynomorphs from the Midland Valley of Scotland, northern Britain, and a metamorphic heavy‐mineral suite indicative of the Grampian Highlands, Southern Uplands and northeast Scotland. These data demonstrate that there was repeated glaciation of the North Sea Basin during the Middle and Late Pleistocene, with ice sheets originating in northern Scotland. There was no evidence for a Scandinavian ice sheet in the western North Sea basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A 140.2 m deep boring (BH 81/29) from the central North Sea (British sector) has been investigated for its foraminiferal content. Fourteen assemblage zones are identified, and these are correlated with other records from the North Sea region. The stratigraphical interpretation of BH 81/29 is supported by palaeomagnetic data and by amino acid dates and thermoluminescence dates from the same boring. Foraminiferal zones 14 to 8, from the bottom of the core, have been referred to the Early Pleistocene. Zones 7 to 4, which occur above the Bruhnes/Matuyama boundary, seem to belonged in the Middle Pleistocene, and zones 3 to 1 are referred to the Late Pleistocene. A characteristic feature of the present sequence is that a major part of the Quaternary record seems to be missing. As is also known from other areas of the North Sea, interglacial deposits are especially badly represented.  相似文献   

13.
During the last (MIS 2) and older glaciations of the North Sea, a North Sea Lobe (NSL) of the British-Irish Ice Sheet flowed onshore and terminated on the lowlands of eastern England, constructing inset sequences of either substantial ice-marginal deposits and tills or only a thin till veneer, indicative of complex and highly dynamic glaciological behaviour. The glaciation limit represented by the Marsh Tills and the Stickney and Horkstow Moraines in Lincolnshire is regarded as the maximum margin of the NSL during MIS 2 and was attained at ∼19.5 ka as determined by OSL dating of overridden lake sediments at Welton le Wold. A later ice marginal position is recorded by the Hogsthorpe-Killingholme Moraine belt, within which ice-walled lake plains indicate large scale ice stagnation rapidly followed ice advance at ∼18.4 ka based on dates from supraglacial lake deposits. The NSL advanced onshore in North Norfolk slightly earlier constructing a moraine ridge at Garrett Hill at ∼21.5ka. In addition to the large ice-dammed lakes in the Humber and Wash lowlands, we propose that an extensive Glacial Lake Lymn was dammed in the southern Lincolnshire Wolds by the NSL ice margin at the Stickney Moraine. Previous proposals that older glacier limits might be recorded in the region, lying between MIS 2 and MIS 12 deposits, are verified by our OSL dates on the Stiffkey moraine, which lies immediately outside the Garrett Hill moraine and appears to be of MIS 6 age.  相似文献   

14.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

15.
The last deglaciation of the Franz Victoria Trough, northern Barents Sea   总被引:4,自引:0,他引:4  
A study of two piston cores and a 3.5 kHz seismic profile from the Franz Victoria Trough provides new stratigraphic, stable isotopic and foraminiferal AMS 14C data that help constrain the timing of ice-sheet retreat in the northern Barents Sea and the nature of the deglacial marine environment. Silty diamicton at the base of each core, interpreted as till or ice-marginal debris flow, suggests that the Barents ice sheet was grounded at the core sites (470 m water depth). Eight AMS 14C dates on sediment overlying the diamicton indicate that the ice sheet retreated from both core sites by 12.9 ka and that postglacial sedimentation began 10 ka ago. These dates, combined with a recently published 14C date from a nearby core, suggest that the Franz Victoria Trough may not have been deglaciated until c . 13 ka, 2000 years later than modeled ice-sheet reconstructions indicate. In the trough, oxygen isotopic ratios in planktonic foraminifera N. pachyderma (sinistral) were 0.5–0.750, lower during deglaciation than after, probably as a result of ice-sheet and/or iceberg melting. Foraminiferal assemblages suggest that Atlantic-derived intermediate water may have begun to penetrate the trough c . 13 ka ago.  相似文献   

16.
The coastal cliffs of Cape Shpindler, Yugorski Peninsula, Arctic Russia, occupy a key position for recording overriding ice sheets during past glaciations in the Kara Sea area, either from the Kara Sea shelf or the uplands of Yugorski Peninsula/Polar Urals. This study on Late Quaternary glacial stratigraphy and glaciotectonic structures of the Cape Shpindler coastal cliffs records two glacier advances and two ice‐free periods older than the Holocene. During interglacial conditions, a sequence of marine to fluvial sediments was deposited. This was followed by a glacial event when ice moved southwards from an ice‐divide over Novaya Zemlya and overrode and disturbed the interglacial sediments. After a second period of fluvial deposition, under interstadial or interglacial conditions, the area was again subject to glacial overriding, with the ice moving northwards from an inland ice divide. The age‐control suggests that the older glacial event could possibly belong to marine oxygen isotope stage (MOIS) 8, Drenthe (300–250 ka), and that the underlying interglacial sediments might be Holsteinian (>300 ka). One implication of this is that relict glacier ice, buried in sediments and incorporated into the permafrost, may survive several interglacial and interstadial events. The younger glacial event recognised in the Cape Shpindler sequence is interpreted to be of Early‐to‐Middle Weichselian age. It is suggested to correlate to a regional glaciation around 90 or 60 ka. The Cape Shpindler record suggests more complex glacial dynamics during that glaciation than can be explained by a concentric ice sheet located in the Kara Sea, as suggested by recent geological and model studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Deep sea sediment cores taken between 50° and 75°N in the North Atlantic, in water depths varying between 1340 and 3850 m, were examined to provide an astronomically calibrated late Quaternary time-scale based on physical property records. Magnetic susceptibility and gamma ray attenuation porosity evaluator (GRAPE) density changes of these cores revealed significant responses to orbital forcing in the eccentricity (100 kyr), obliquity (41 kyr) and precessional (23, 19 kyr) bands. At 75°N (Greenland Sea), a response to obliquity forcing was weak despite the fact that it should become more pronounced in sediments at high latitudes. Application of bandpass filtering at the obliquity period (41 kyr), however, showed that variance at this period did exist in the magnetic susceptibility record, but at a very low power. At 50°N stacked curves of magnetic susceptibility correlated strongly with the SPECMAP curve for the past 500 ka. Since about 65 ka, dropstone layers are recorded in both magnetic susceptibility and GRAPE data of Rockall Plateau sediments. Although Rockall Plateau sediments show peaks in physical properties that correlate with Heinrich events (H1, H2, H4, H5, H6), such a relationship was not readily observed in Norwegian-Greenland Sea records. Heinrich events at Rockall Plateau sites indicate a northward flow of icebergs in the eastern North Atlantic. This flow pattern and the presence of Heinrich events during the past 65 ka raise the questions of whether similar events occurred before this time period, and to what kind of ice sheet dynamics and climatic-oceanographic conditions favoured major iceberg surges from the Laurentide ice sheet to the North Atlantic at 50°N.  相似文献   

18.
High-resolution 2D seismic data from the western side of Dogger Bank (North Sea) has revealed that the glacigenic sediments of the Dogger Bank Formation record a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonism. The resulting complex assemblage of glacial landforms and sediments record the interplay between two separate ice masses revealing that Late Devensian ice sheet dynamics across Dogger Bank were far more complex than previously thought, involving the North Sea lobe of the British and Irish Ice Sheet, advancing from the west, interacting with the Dogger Bank lobe which expanded from the north. The active northward retreat of the Dogger Bank lobe resulted in the development of a complex assemblage of arcuate thrust-block moraines (≤ 15 km wide, > 30 km long) composed of highly folded and thrust sediments, separated by sedimentary basins and meltwater channels filled by outwash. The impact of the North Sea lobe was restricted to the western margin of Dogger Bank and led to deep-seated (100–150 m thick) glacitectonism in response to ice-push from the west. During the earlier expansion of the North Sea lobe, this thrust and fold complex initially occupied a frontal marginal position changing to a more lateral ice-marginal position as the ice sheet continued to expand to the south. The complex structural relationships between the two glacitectonic complexes indicates that these ice masses interacted along the western side of Dogger Bank, with the inundation of this area by ice probably occurring during the last glaciation when the ice sheets attained their maximum extents.  相似文献   

19.
At the end of the Middle Weichselian (30–25 ka BP) a glacier advance from southern Norway, termed the Kattegat Ice Stream, covered northern Denmark, the Kattegat Sea floor and the Swedish West Coast during onset of the Last Glacial Maximum (LGM) at the southwest margin of the Scandinavian Ice Sheet. The lithostratigraphic unit deposited by the ice stream is the till of the Kattegat Formation (Kattegat till). Because morphological features have been erased by later glacial events, stratigraphic control and timing are decisive. The former ice stream is identified by the dispersal of Oslo indicator erratics from southern Norway and by glaciodynamic structures combined with glaciotectonic deformation of subtill sediments. Ice movement was generally from northerly directions and the flow pattern is fan-shaped in marginal areas. To the east, the Kattegat Ice Stream was flanked by passive glaciers in southern Sweden and its distribution was probably governed by the presence of low permeability and highly deformable marine and lacustrine deposits. When glaciers from southern Norway blocked the Norwegian Channel, former marine basins in the Skagerrak and Kattegat experienced glaciolacustrine conditions around 31–29 ka BP. The Kattegat Ice Stream became active some time between 29 ka BP and 26 ka BP, when glaciers from the Oslo region penetrated deep into the shallow depression occupied by the Kattegat Ice Lake. Deglaciation and an interlude with periglacial and glaciolacustrine sedimentation lasted until c. 24–22 ka BP and were succeeded by the Main Glacier Advance from central Sweden reaching the limit of Late Weichselian glaciations in Denmark around 22–20 ka BP, the peak of the LGM. This was followed by deglaciation and marine inundation in the Kattegat and Skagerrak around 17 ka BP.  相似文献   

20.
《第四纪科学杂志》2017,32(1):48-62
The southernmost terrestrial extent of the Irish Sea Ice Stream (ISIS), which drained a large proportion of the last British–Irish Ice Sheet, impinged on to the Isles of Scilly during Marine Isotope Stage 2. However, the age of this ice limit has been contested and the interpretation that this occurred during the Last Glacial Maximum (LGM) remains controversial. This study reports new ages using optically stimulated luminescence (OSL) dating of outwash sediments at Battery, Tresco (25.5 ± 1.5 ka), and terrestrial cosmogenic nuclide exposure dating of boulders overlying till on Scilly Rock (25.9 ± 1.6 ka), which confirm that the ISIS reached the Isles of Scilly during the LGM. The ages demonstrate this ice advance on to the northern Isles of Scilly occurred at ∼26 ka around the time of increased ice‐rafted debris in the adjacent marine record from the continental margin, which coincided with Heinrich Event 2 at ∼24 ka. OSL dating (19.6 ± 1.5 ka) of the post‐glacial Hell Bay Gravel at Battery suggests there was then an ∼5‐ka delay between primary deposition and aeolian reworking of the glacigenic sediment, during a time when the ISIS ice front was oscillating on and around the Llŷn Peninsula, ∼390 km to the north. Copyright © 2017 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号