首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Chondrules in the Bali-like CV chondrite Kaba and the Allende-like portion of the Mokoia breccia have been studied to explore the relationship between hydrous alteration to form phyllosilicates and anhydrous alteration resulting in secondary olivine zonation, replacement of enstatite by ferroan olivine and formation of feldspathoids (nepheline and sodalite). All Kaba chondrules experienced extensive hydrous alteration; whereas, anhydrous alteration was minor and resulted only in the olivine zonation. On the other hand, all of the Mokoia chondrules experienced both extensive anhydrous and hydrous alteration. Bronzite rims formed between relic enstatite grains and phyllosilicates in both Kaba and Mokoia during the hydrous alteration. Petrographic observations indicate that phyllosilicates in Mokoia postdate formation of the secondary ferroan olivine and feldspathoids. We conclude that anhydrous alteration in Kaba and Mokoia predated hydrous alteration and took place before accretion of chondrules into the CV parent asteroid.  相似文献   

2.
Abstract— Here we report the petrography, mineralogy, and bulk compositions of Ca,Al‐rich inclusions (CAIs), amoeboid olivine aggregate (AOA), and Al‐rich chondrules (ARCs) in Sayh al Uhaymir (SaU) 290 CH chondrite. Eighty‐two CAIs (0.1% of the section surface area) were found. They are hibonite‐rich (9%), grossite‐rich (18%), melilite ± spinel‐rich (48%), fassaite ± spinel‐rich (15%), and fassaite‐anorthite‐rich (10%) refractory inclusions. Most CAIs are rounded in shape and small in size (average = 40 μm). They are more refractory than those of other groups of chondrites. CAIs in SaU 290 might have experienced higher peak heating temperatures, which could be due to the formation region closer to the center of protoplanetary disk or have formed earlier than those of other groups of chondrites. In SaU 290, refractory inclusions with a layered texture could have formed by gas‐solid condensation from the solar nebula and those with an igneous texture could have crystallized from melt droplets or experienced subsequent melting of pre‐existing condensates from the solar nebula. One refractory inclusion represents an evaporation product of pre‐existing refractory solid on the basis of its layered texture and melting temperature of constituting minerals. Only one AOA is observed (75 μm across). It consists of olivine, Al‐diopside, anorthite, and minor spinel with a layered texture. CAIs and AOA show no significant low‐temperature aqueous alteration. ARCs in SaU 290 consist of diopside, forsterite, anorthite, Al‐enstatite, spinel, and mesostasis or glass. They can be divided into diopside‐rich, Al‐enstatite‐rich, glass‐rich, and anorthite‐rich chondrules. Bulk compositions of most ARCs are consistent with a mixture origin of CAIs and ferromagnesian chondrules. Anorthite and Al‐enstatite do not coexist in a given ARC, implying a kinetic effect on their formation.  相似文献   

3.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

4.
Abstract— The Y-86751 chondrite (CV3) consists of fine-grained Ca- and Al-rich inclusions (CAIs), amoeboid olivine inclusions (AOIs), spinel-rich inclusions, chondrules with and without dark rims, dark inclusions, isolated minerals, metal-sulfide aggregates, and matrix. Olivines in chondrules without dark rims and AOIs coexist with magnetite and show strong zoning from a magnesian core to a ferroan rim. Spinels in spinel-rich inclusions show similar zoning. This zoning seems to be caused by exchange reaction of olivine and spinel with an oxidized nebular gas prior to the accretion onto the parent body, and the Mg/Fe diffusion in olivines and spinels took place at a temperature of about 830–860 K. At the same time, enstatite in chondrules without dark rims was replaced by ferroan olivine at the grain boundaries. This feature suggests that chondrules without dark rims, fine-grained CAIs, spinel-rich inclusions, and AOIs have experienced oxidation in an oxidizing nebular gas. The oxygen fugacity of the oxidized nebular gas was >10?27.3 bars at about 830 K, being more than 104x larger than that of the canonical nebular gas. Magnetite occurs in the Y-86751 matrix in close association with Ni-rich taenite and Co-rich metal, and it was produced under a condition with the oxygen fugacity of ~10?38 bars at a temperature of about 620–650 K. On the other hand, olivines in chondrules with dark rims and dark inclusions are magnesian and rich in MnO. They do not show such strong zoning. Probably they were in equilibrium with a nebular gas under a redox condition different from the oxidized nebular gas that produced the zoned olivines in chondrules without dark rims.  相似文献   

5.
Abstract— FeO-rich (Fs6–34) pyroxene lacking cathodoluminescence (CL), hereafter black pyroxene, is a major constituent of some of the chondrules and fragments in unequilibrated (type 3) enstatite chondrites (UECs). It contains structurally oriented zones of Cr-, Mn-, V-rich, FeO-poor enstatite with red CL, associated with mm-sized blebs of low-Ni, Fe-metal and, in some cases, silica. These occurrences represent clear evidence of pyroxene reduction. The black pyroxene is nearly always rimmed by minor element (Cr, Mn, V)-poor enstatite having a blue CL. More commonly, red and blue enstatites, unassociated with black pyroxene, occur as larger grains in chondrules and fragments, and these constitute the major silicate phases in UECs. The REE abundance patterns of the black pyroxene are LREE-depleted. The blue enstatite rims, however, have a near-flat to LREE-enriched pattern, ~0.5–4x chondritic. The petrologic and trace element data indicate that the black pyroxene is from an earlier generation of chondrules that formed in a nebular region that was more oxidizing than that of the enstatite chondrites. Following solidification, these chondrules experienced a more reducing nebular environment and underwent reduction. Some, perhaps most, of the red enstatite that is common throughout the UECs may be the product of solid-state reduction of black pyroxene. The blue enstatite rims grew onto the surfaces of the black pyroxene and red enstatite as a result of condensation from a nebular gas. The evolutionary history of some of the enstatite and chondrules in enstatite chondrites can be expressed in a four-stage model that includes: Stage 1. Formation of chondrules in an oxidizing nebular environment Stage 2. Solid-state reduction of the more oxidized chondrules and fragments to red enstatite in a more reducing nebular environment Stage 3. Formation of blue enstatite rims on the black pyroxene as well as on the red enstatite. Stage 4. Reprocessing, by various degrees of melting, of many of the earlier-formed materials.  相似文献   

6.
We report in situ LA‐ICP‐MS trace element analyses of silicate phases in olivine‐bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance of opaque nodules found outside them in EH chondrites. In two chondrules, olivine and enstatite exhibit negatively sloped REE patterns, which may be an extreme manifestation of a general phenomenon (possibly linked to near‐liquidus partitioning) underlying the overabundance of light REE observed in most chondrule silicates relative to equilibrium predictions. The silicate phases in one of these two chondrules show complementary Eu, Yb, and Sm anomalies providing direct evidence for the postulated occurrence of the divalent state for these elements at some stage in the formation reservoir of enstatite chondrites. Our work supports the idea that the peculiarities of enstatite chondrites may not require a condensation sequence at high C/O ratios as has long been believed.  相似文献   

7.
Abstract— The study of chondrules provides information about processes occurring in the early solar system. In order to ascertain to what extent these processes played a role in determining the properties of the enstatite chondrites, the physical and chemical properties of chondrules from three EL3 chondrites and three EH3 chondrites have been examined by optical, cathodoluminescence (CL), and electron microprobe techniques. Properties examined include size, texture, CL, and composition of both individual phases and bulk chondrules. The textures, distribution of textures, and composition of silicates of the EL3 chondrules resemble those of EH3 chondrules. However, the chondrules from the two classes differ in that (1) the size distribution of the EL chondrules is skewed to larger values than EH chondrules, (2) the enstatite in EL chondrules displays varying shades of red CL due to the presence of fine‐grained sulfides and metal in the silicates, and (3) the mesostasis of EH chondrules is enriched in Na relative to that of EL chondrules. The similarities between the chondrules of the two classes suggest similar precursor materials, while the differences suggest that there was not a single reservoir of meteoritic chondrules, but that their origin was fairly local. The differences in the size distribution of chondrules in EH and EL chondrites may be explained by aerodynamic and gravitational sorting during accumulation of the meteoric material, while differences in CL and mesostasis properties may reflect differences in formation conditions and cooling rate following chondrule formation. We argue that our observations are consistent with the formation of enstatite chondrites in a thick dynamic regolith on their parent body.  相似文献   

8.
Abstract– Northwest Africa 5492 is a new metal‐rich chondrite breccia that may represent a new oxygen reservoir and new chondrite parent body. It has some textural similarities to CB and CH chondrites, but silicates are more reduced, sulfides are more common and not associated with metal, and metal compositions differ from CB and CH chondrites. Oxygen isotope ratios indicate that Northwest Africa (NWA) 5492 components (chondrules and lithic fragments) formed in at least two different oxygen reservoirs. The more common, and presumably host, component plots in a region above the terrestrial fractionation line, below ordinary chondrite compositions, and just above enstatite chondrites in 3‐oxygen space. The only other chondritic materials that plot in this region are chondrules from the Grosvenor Mountains (GRO) 95551 ungrouped metal‐rich chondrite. The other rare component plots near the CR, CB, and CH chondrites. Based on petrologic characteristics and oxygen isotopic compositions, NWA 5492 appears to be related to the ungrouped metal‐rich GRO 95551 chondrite.  相似文献   

9.
Happy Canyon [found: 1971, 34° 46.5′N, 101° 33.6′W, Texas] consists of about 85 vol. % enstatite (Fs 0.4%), 5 to 10 vol % plagioclase (An 26%), and 5 vol % diopside (Fs 0.9%). In addition, there are minor remnants of metal (Ni 6.35 wt %, Si-free) and troilite (with 5.10 wt % Cr and 1.15 wt % Ti) that have survived extensive terrestrial weathering. The meteorite has a cumulate texture, uniform-size euhedral, prismatic crystals of enstatite (0.3 to 0.4 mm long) with interstitial plagioclase, diopside, troilite, and metal. The enstatite crystals are dominantly disordered and occur in alignments that suggest flow. There are no chondrules or remnants of chondrules. The enstatite crystals contain internal negative crystal voids, which are charactieristic of enstatite achondrites, as well as internal branching submicron rivulet dislocations. The bulk composition is that of an E6 enstatite chondrite, however, it has the texture of a crystal cumulate; achondritic, but unlike that of enstatite achondrites. Glass of a granitic composition occurs mainly in the mesostasis and is compositionally like the glass found inside pyroxene crystals in the Cumberland Falls enstatite achondrite. Happy Canyon is most simply explained as an E6 composition that has melted and reprecipitated at a slightly higher oxidation state, at some depth (> 7 km), possibly in the core volume of a small, asteroidal-size parent body. In terms of classification, it occupies the gap between the recrystallized enstatite chondrites and the igneous, crystalline, unbrecciated enstatite achondrites like Shallowater. Happy Canyon is a new type of enstatite achondrite  相似文献   

10.
Abstract– Six chondritic clasts in the Cumberland Falls polymict breccia were examined: four texturally resemble ordinary chondrites (OCs) and two are impact melt breccias containing shocked OC clasts adjacent to a melt matrix. The six chondritic clasts are probably remnants of a single OC projectile that was heterogeneously shocked when it collided with the Cumberland Falls host. Mayo Belwa is the first known aubrite impact melt breccia. It contains coarse enstatite grains exhibiting mosaic extinction; the enstatite grains are surrounded by a melt matrix composed of 3–16 μm‐size euhedral and subhedral enstatite grains embedded in sodic plagioclase. Numerous vugs, ranging from a few micrometers to a few millimeters in size, constitute ~5 vol% of the meteorite. They occur nearly exclusively within the Mayo Belwa matrix; literature data show that some vugs are lined with bundles of acicular grains of the amphibole fluor‐richterite. This phase has been reported previously in only two other enstatite meteorites (Abee and St. Sauveur), both of which are EH‐chondrite impact melt breccias. It seems likely that in Mayo Belwa, volatiles were vaporized during an impact event and formed bubbles in the melt. As the melt solidified, the bubbles became cavities; plagioclase and fluor‐richterite crystallized at the margins of these cavities via reaction of the melt with the vapor.  相似文献   

11.
The Weston meteorite is a breccia containing mostly light-colored equilibrated chondritic xenoliths and less abundant highly un-equilibrated chondritic inclusions fixed in a dark grey host of chondrules, mineral and rock fragments. Many of the inclusions show evidence of shock. Unlike most xenolithic chondrites, the Weston host contains a large fraction of considerably more equilibrated silicates than is found in the unequilibrated inclusions, suggesting either that most host silicates retain the mineral chemistry of an equilibrated source indigenous to Weston, or represent a unique fraction which equilibrated separately, prior to final agglomeration. The host silicates are similar in composition to minerals in the common xenoliths, supporting the former possibility that host chondrules and mineral fragments are derived from the xenolithic material, probably by impact fragmentation and melting. Also mixed with Weston is a small but distinct carbonaceous component including the minerals fassaite, Fespinel, forsterite, magnetite and Ca-Al-rich inclusion which are normally associated with carbonaceous chondrites.  相似文献   

12.
For the first time, ordinary chondrite material—the most common type among the present-day fall meteorite—has been found in the unique Kaidun breccia. The discovered object is a large unequilibrated olivine-pyroxene porphyritic chondrule, with peripheral and central zones of different structures, suggesting different crystallization regimes. In chemical composition, the chondrule corresponds to unequilibrated ordinary chondrites of petrological type 3; it is enriched in lithophile elements and depleted in siderophiles, indicating formation by melting of the parent material, which preceded or was accompanied by metal-silicate fractionating. The chondrule material was subjected to aqueous alteration that formed smectite and calcite in the cavities and veins of its central part. The anomalous oxygen isotopic compositions of the chondrule are evidence of an oxygen reservoir different from known types of meteorites, including the ordinary-chondrite chondrules. Thus, the unique breccia Kaidun contains ordinary chondrite material along with carbonaceous and enstatite chondrite material, products of early nebular processes, and highly differentiated planetary-type material.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 2, 2005, pp. 169–176.Original Russian Text Copyright © 2005 by Ivanova, Kononkova, Ivanov.  相似文献   

13.
Abstract— Transmission-electron-microscopy (TEM) and optical data suggest that chondrules in the Chainpur (LL3.4) chondrite experienced varied thermal and deformation histories prior to the final agglomeration of the meteorite. Chainpur may be regarded as an agglomerate or breccia that experienced little deformation or heating during and after the final accumulation and compaction of its constituents. One chondrule in Chainpur was impact-shocked to high pressures (~ 20–50 GPa), almost certainly prior to final agglomeration, either while it was an independent entity in space or while it was in the regolith of a parent body. However, most (>85%) of the chondrules in Chainpur were evidently not significantly shock-metamorphosed subsequent to their formation. The dearth of shock effects implies that most chondrules in Chainpur did not form by shock melting, although some chondrules may have formed by this process. Dusty-metal-bearing olivine grains, which are widely interpreted to have escaped melting during chondrule formation, contain moderate densities of dislocations (~ 108 cm?2). The dislocations in these grains were introduced before or during the last episode of melting in at least one chondrule. This observation can be explained if olivine was impact-deformed before or during chondrule formation, or if olivine was strained by reduction or thermally-induced processes during chondrule formation. Low-Ca pyroxene grains in chondrules are often strained. In most cases this strain probably arose as a by-product of polytype transformations (protoenstatite → clinoenstatite/orthoenstatite and clinoenstatite → orthoenstatite) that occurred during the igneous crystallization and static annealing of chondrules. Droplet chondrules with glassy mesostases were minimally annealed, consistent with an origin as relatively rapidly cooled objects in an unconfined, cold environment. Some irregular chondrules and at least one droplet chondrule were thermally metamorphosed prior to final agglomeration, either as a result of moderately slow cooling (~ 100 °C/hr) from melt temperatures (during autometamorphism) or as a result of reheating episodes. Two of the most annealed chondrules contain relatively abundant plagioclase feldspar, and one of these has a uniform olivine composition appropriate to that of an LL4 chondrite.  相似文献   

14.
Abstract— We studied 2 enstatite aggregates (En >99), with sizes of 0.5 and 1.5 mm, embedded in the carbonaceous matrix of Kaidun. They contain sulfide inclusions up to 650 μm in length, which consist mainly of niningerite but contain numerous grains of heideite as well as oldhamite and some secondary phases (complex Fe, Ti, S hydroxides and Ca carbonate). Both niningerite and heideite are enriched in all trace elements relative to the co‐existing enstatite except for Be and Sc. The niningerite has the highest Ca content (about 5 wt%) of all niningerites analyzed so far in any meteorite and is the phase richest in trace elements. The REE pattern is fractionated, with the CI‐normalized abundance of Lu being higher by 2 orders of magnitude than that of La, and has a strong negative Eu anomaly. Heideite is, on average, poorer in trace elements except for Zr, La, and Li. Its REE pattern is flat at about 0.5 × CI, and it also has a strong negative Eu anomaly. The enstatite is very poor in trace elements. Its Ce content is about 0.01 that of niningerite, but Li, Be, Ti, and Sc have between 0.1 and 1 × CI abundances. The preferential partitioning of typical lithophile elements into sulfides indicates highly O‐deficient and S‐dominated formation conditions for the aggregates. The minimum temperature of niningerite formation is estimated to be ?850–900 °C. The texture and the chemical characteristics of the phases in the aggregates suggest formation by aggregation and subsequent sintering before incorporation into the Kaidun breccia. The trace element data obtained for heideite, the first on record, show that this mineral, in addition to oldhamite and niningerite, is also a significant carrier of trace elements in enstatite meteorites.  相似文献   

15.
Abstract— The oxidized CV3 chondrites can be divided into two major subgroups or lithologies, Bali-like (CV3oxB) and Allende-like (CV3oxA), in which chondrules, calcium-aluminum-rich inclusions (CAIs) and matrices show characteristic alteration features (Weisberg et al, 1997; Krot et al, 1997d; Kimura and Ikeda, 1997). The CV3oxB lithology is present in Bali, Kaba, parts of the Mokoia breccia and, possibly, in Grosnaja and Allan Hills (ALH) 85006. It is characterized by the presence of the secondary low-Ca phyllosilicates (saponite and sodium phlogopite), magnetite, Ni-rich sulfides, fayalite (Fa>90), Ca-Fe-rich pyroxenes (Fs10–50Wo45–50) and andradite. Phyllosilicates replace primary Ca-rich minerals in chondrules and CAIs, which suggests mobilization of Ca during aqueous alteration. Magnetite nodules are replaced to various degrees by fayalite, Ca-Fe-rich pyroxenes and minor andradite. Fayalite veins crosscut fine-grained rims around chondrules and extend into the matrix. Thermodynamic analysis of the observed reactions indicates that they could have occurred at relatively low temperatures (<300 °C) in the presence of aqueous solutions. Oxygen isotopic compositions of the coexisting magnetite and fayalite plot close to the terrestrial fractionation line with large Δ18Ofayalite-magnetite fractionation (~20%). We infer that phyllosilicates, magnetite, fayalite, Ca-Fe-rich pyroxenes and andradite formed at relatively low temperatures (<300 °C) by fluid-rock interaction in an asteroidal environment. Secondary fayalite and phyllosilicates are virtually absent in chondrules and CAIs in the CV3oxA lithology, which is present in Allende and its dark inclusions, Axtell, ALHA81258, ALH 84028, Lewis Cliff (LEW) 86006, and parts of the Mokoia and Vigarano breccias. Instead secondary nepheline, sodalite, and fayalitic olivine are common. Fayalitic olivine in chondrules replaces low-Ca pyroxenes and rims and veins forsterite grains; it also forms coarse lath-shaped grains in matrix. Secondary Ca-Fe-rich pyroxenes are abundant. We infer that the CV3oxA lithology experienced alteration at higher temperatures than the CV3oxB lithology. The presence of the reduced and CV3oxA lithologies in the Vigarano breccia and CV3oxA and CV3oXB lithologies in the Mokoia breccia indicates that all CV3 chondrites came from one heterogeneously altered asteroid. The metamorphosed clasts in Mokoia (Krot and Hutcheon, 1997) may be rare samples of the hotter interior of the CV asteroid. We conclude that the alteration features observed in the oxidized CV3 chondrites resulted from the fluid-rock interaction in an asteroid during progressive metamorphism of a heterogeneous mixture of ices and anhydrous materials mineralogically similar to the reduced CV3 chondrites.  相似文献   

16.
Yilmia, a new enstatite chondrite contains moderately well defined radiating and granular chondrules. The plagioclase to enstatite ratio is appreciably higher within than outside of the two granular chondrules in our microprobe sections. Osbornite was observed within the granular chondrules, but not in the rayed chondrules or surrounding matrix Major phases include enstatite, plagioclase (Ab80 An16 Or4), silica, silicon-rich kamacite and titanian troilite. Minor phases are many and varied: sinoite, silicon-rich taenite, schreibersite, graphite, osbornite, oldhamite, “normal” and zincian daubreelite, ferroan alabandite and a new FeZnMn monosulfide The new mineral (Fe.538 Zn.246 Mn.159 Mg.004 S) closely resembles albandite and could easily have been overlooked in other meteorites unless a microprobe was used. A new form of oldhamite was also found. Indarch oldhamite, analyzed for comparative purposes, consists of two similar but distinct species: Ca.96 Mn.005 Mg.04 Fe.01 S and Ca1.000 Mn.004 Mg.02 Fe.005 S. These have not been reported from other meteorites Based on its mineralogy and texture this is a type II (E6) enstatite chondrite that is transitional toward the intermediate type (E5). It is unique in its mineralogical complexity, abundance of taenite, diversity of zincian minerals and monosulfides, and restriction of osbornite to certain chondrules  相似文献   

17.
Abstract– The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine‐grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar δ15N and δ13C; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium‐heterogeneity and having mean H‐ and N‐isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer‐sized areas highly enriched in 15N (δ15N up to 1600‰). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.  相似文献   

18.
Bulk major element composition, petrography, mineralogy, and oxygen isotope compositions of twenty Al‐rich chondrules (ARCs) from five CV3 chondrites (Northwest Africa [NWA] 989, NWA 2086, NWA 2140, NWA 2697, NWA 3118) and the Ningqiang carbonaceous chondrite were studied and compared with those of ferromagnesian chondrules and refractory inclusions. Most ARCs are marginally Al‐richer than ferromagnesian chondrules with bulk Al2O3 of 10–15 wt%. ARCs are texturally similar to ferromagnesian chondrules, composed primarily of olivine, pyroxene, plagioclase, spinel, Al‐rich glass, and metallic phases. Minerals in ARCs have intermediate compositions. Low‐Ca pyroxene (Fs0.6–8.8Wo0.7–9.3) has much higher Al2O3 and TiO2 contents (up to 12.5 and 2.3 wt%, respectively) than that in ferromagnesian chondrules. High‐Ca pyroxene (Fs0.3–2.0Wo33–54) contains less Al2O3 and TiO2 than that in Ca,Al‐rich inclusions (CAIs). Plagioclase (An77–99Ab1–23) is much more sodic than that in CAIs. Spinel is enriched in moderately volatile element Cr (up to 6.7 wt%) compared to that in CAIs. Al‐rich enstatite coexists with anorthite and spinel in a glass‐free chondrule, implying that the formation of Al‐enstatite was not due to kinetic reasons but is likely due to the high Al2O3/CaO ratio (7.4) of the bulk chondrule. Three ARCs contain relict CAIs. Oxygen isotope compositions of ARCs are also intermediate between those of ferromagnesian chondrules and CAIs. They vary from ?39.4‰ to 13.9‰ in δ18O and yield a best fit line (slope = 0.88) close to the carbonaceous chondrite anhydrous mineral (CCAM) line. Chondrules with 5–10 wt% bulk Al2O3 have a slightly more narrow range in δ18O (?32.5 to 5.9‰) along the CCAM line. Except for the ARCs with relict phases, however, most ARCs have oxygen isotope compositions (>?20‰ in δ18O) similar to those of typical ferromagnesian chondrules. ARCs are genetically related to both ferromagnesian chondrules and CAIs, but the relationship between ARCs and ferromagnesian chondrules is closer. Most ARCs were formed during flash heating and rapid cooling processes like normal chondrules, only from chemically evolved precursors. ARCs extremely enriched in Al and those with relict phases could have had a hybrid origin (Krot et al. 2002) which incorporated refractory inclusions as part of the precursors in addition to ferromagnesian materials. The occurrence of melilite in ARCs indicates that melilite‐rich CAIs might be present in the precursor materials of ARCs. The absence of melilite in most ARCs is possibly due to high‐temperature interactions between a chondrule melt and the solar nebula.  相似文献   

19.
20.
Abstract— Galim is a polymict breccia consisting of a heavily shocked (shock stage S6) LL6 chondrite, Galim (a), and an impact-melted EH chondrite, Galim (b). Relict chondrules in Galim (b) served as nucleation sites for euhedral enstatite grains crystallizing from the impact melt. Many of the reduced phases typical of EH chondrites (e.g., Si-bearing metallic Fe-Ni; Ti-bearing troilite) are absent. Galim (b) was probably shock-melted while in contact with a more oxidized source, namely, Galim (a); during this event, Si was oxidized from the metal and Ti was oxidized from troilite. Galim (a) contains shock veins and recrystallized, unzoned olivine. The absence of evidence for reduction in Galim (a) may indicate that the amount of LL material greatly exceeded that of EH material; shock metamorphism may have taken place on the LL parent body. Shock-induced redox reactions such as those inferred for the Galim breccia appear to be restricted mainly to asteroids because the low-end tail of their relative-velocity distribution permits mixing of intact disparate materials (including accretion of projectiles of different oxidation states), whereas the peak of the distribution leads to high equilibration shock pressures (allowing impact-induced exchange between previously accreted, disequilibrated materials). Galim probably formed by a two-stage process: (1) accretion to the LL parent body of an intact EH projectile at low relative velocities, and (2) shock metamorphism of the assemblage by the subsequent impact of another projectile at significantly higher relative velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号