首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The 40 km wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward‐verging inclined folds and a km‐scale anticline in the outer ring of the structure. The folding stage was followed by radial and concentric faulting, with downward displacement of kilometer‐scale blocks around the crater rim. The central uplift records evidence for km‐scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached from the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km‐scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward‐plunging radial folds indicate tangential oblate shortening of the strata during the imbrication of the thrust sheets. Each individual sheet records an early stage of folding and thickening due to non‐coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer‐scale inward movement of the target strata from the transient cavity walls to the central uplift. The outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10–12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks.  相似文献   

2.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

3.
Abstract— In Leon County, Texas, USA, the Marquez Dome, an approximately circular 1.2 km diameter zone of disturbed Cretaceous rocks surrounded by shallow dipping Tertiary sediments, has been interpreted by Gibson and Sharpton (1989) and Sharpton and Gibson (1990) as the surface expression of a buried complex impact crater. New gravity and magnetic anomaly data collected over the Marquez Dome have been combined with well‐log and seismic reflection information to develop a better estimate of the overall geometry of the structure. A three‐dimensional model constructed to a depth of 2000 m from all available information indicates a complex crater 13 km in diameter with an uplift in the center of at least 1120 m. The zone of deformation associated with the cratering event is limited to a depth of <1720 m. No impact breccias were recovered in drilling at two locations, 1.1 and 2 km from the center of the structure, and the central uplift may be the only prominent remnant of this impact into unconsolidated, water‐rich sediments. The magnetic anomaly field shows no correlation with the location and extent of the structure.  相似文献   

4.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

5.
Forward modeling is commonly applied to gravity field data of impact structures to determine the main gravity anomaly sources. In this context, we have developed 2.5‐D gravity models of the Serra da Cangalha impact structure for the purpose of investigating geological bodies/structures underneath the crater. Interpretation of the models was supported by ground magnetic data acquired along profiles, as well as by high resolution aeromagnetic data. Ground magnetic data reveal the presence of short‐wavelength anomalies probably related to shallow magnetic sources that could have been emplaced during the cratering process. Aeromagnetic data show that the basement underneath the crater occurs at an average depth of about 1.9 km, whereas in the region beneath the central uplift it is raised to 0.5–1 km below the current surface. These depths are also supported by 2.5‐D gravity models showing a gentle relief for the basement beneath the central uplift area. Geophysical data were used to provide further constraints for numeral modeling of crater formation that provided important information on the structural modification that affected the rocks underneath the crater, as well as on shock‐induced modifications of target rocks. The results showed that the morphology is consistent with the current observations of the crater and that Serra da Cangalha was formed by a meteorite of approximately 1.4 km diameter striking at 12 km s?1.  相似文献   

6.
Abstract— The 3.4 km wide, so‐called Kgagodi Basin structure, which is centered at longitude 27°34.4′ E and latitude 22°28.6′ S in eastern Botswana, has been confirmed as a meteorite impact structure. This crater structure was first recognized through geophysical analysis; now, we confirm its impact origin by the recognition of shock metamorphosed material in samples from a drill core obtained close to the crater rim. The structure formed in Archean granitoid basement overlain and intruded by Karoo dolerite. The crater yielded a gravity model consistent with a simple bowl‐shape crater form. The drill core extends to a depth of 274 m and comprises crater fill sediments to a depth of 158 m. Impact breccia was recovered only between 158 and 165 m depth, below which locally brecciated basement granitoids grade into fractured and eventually undeformed crystalline basement, from ~250 m depth. Shock metamorphic effects were only found in granitoid clasts in the narrow breccia zone. This breccia is classified as suevitic impact breccia due to the presence of melt and glass fragments, at a very small abundance. The shocked grains are exclusively derived from granitoid target material. Shock effects include multiple sets of planar deformation features in quartz and feldspar; diaplectic quartz, and partially and completely isotropized felsic minerals, and rare melt fragments were encountered. Abundances of some siderophile elements and especially, Ir, in suevitic breccia samples are significantly elevated compared to the contents in the target rocks, which provides evidence for the presence of a small meteoritic component. Kgagodi is the first impact structure recognized in the region of the Kalahari Desert in southern Africa. Based on lithological and first palynological evidence, the age of the Kgagodi structure is tentatively assigned to the upper Cretaceous to early Tertiary interval. Thus, the crater fill has the potential to provide a long record of paleoclimatic conditions.  相似文献   

7.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   

8.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

9.
Abstract— The results of a new gravity survey show that the Haughton impact structure is associated with a 24 km diameter negative Bouguer gravity anomaly with a maximum amplitude of ?12 mgal. A local minimum with a half-width of 2 km and an amplitude of ?4 mgal is located at the center of the structure. A positive magnetic total field anomaly with a half-width of 0.6 km and an amplitude of 700 nT coincides with the local central gravity anomaly. The overall negative gravity anomaly is explained by lowered rock densities due to impact-related fracturing in the crater area. The central gravity and magnetic anomalies are believed to be due to highly shocked and heated sedimentary and crystalline basement rocks forming the unexposed peak of the central uplift in the Haughton impact structure.  相似文献   

10.
Geological and geophysical evidence is presented for a newly discovered, probable remnant complex impact structure. The structure, located near Bow City, southern Alberta, has no obvious morphological expression at surface. The geometry of the structure in the shallow subsurface, mapped using downhole geophysical well logs, is a semicircular structural depression approximately 8 km in diameter with a semicircular uplifted central region. Detailed subsurface mapping revealed evidence of localized duplication of stratigraphic section in the central uplift area and omission of strata within the surrounding annular region. Field mapping of outcrop confirmed an inlier of older rocks present within the center of the structure. Evidence of deformation along the eastern margin of the central uplift includes thrust faulting, folding, and steeply dipping bedding. Normal faults were mapped along the northern margin of the annular region. Isopach maps reveal that structural thickening and thinning were accommodated primarily within the Belly River Group. Evidence from legacy 2‐D seismic data is consistent with the subsurface mapping and reveals additional insight into the geometry of the structure, including a series of listric normal faults in the annular region and complex faulting within the central uplift. The absence of any ejecta blanket, breccia, suevite, or melt sheet (based on available data) is consistent with the Bow City structure being the remnant of a deeply eroded, complex impact structure. Accordingly, the Bow City structure may provide rare access and insight into zones of deformation remaining beneath an excavated transient crater in stratified siliciclastic target rocks.  相似文献   

11.
Abstract— The well‐preserved Kärdla impact crater, on Hiiumaa Island, Estonia, is a 4 km diameter structure formed in a shallow Ordovician sea ?455 Ma ago into a target composed of thin (?150 m) unconsolidated sedimentary layer above a crystalline basement composed of migmatite granites, amphibolites and gneisses. The fractured and crushed amphibolites in the crater area are strongly altered and replaced with secondary chloritic minerals. The most intensive chloritization is found in permeable breccias and heavily shattered basement around and above the central uplift. Alteration is believed to have resulted from convective flow of hydrothermal fluids through the central areas of the crater. Chloritic mineral associations suggest formation temperatures of 100–300 °C, in agreement with the most frequent quartz fluid inclusion homogenization temperatures of 150–300 °C in allochthonous breccia. The rather low salinity of fluids in Kärdla crater (<13 wt% NaCleq) suggests that the hydrothermal system was recharged either by infiltration of meteoric waters from the crater rim walls raised above sea level after the impact, or by invasion of sea water through the disturbed sedimentary cover and fractured crystalline basement. The well‐developed hydrothermal system in Kärdla crater shows that the thermal history of the shock‐heated and uplifted rocks in the central crater area, rather than cooling of impact melt or suevite sheets, controlled the distribution and intensity of the impact‐induced hydrothermal processes.  相似文献   

12.
Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz‐bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best‐fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best‐fit model results in a final crater (rim‐to‐rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak‐ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure.  相似文献   

13.
The origin of the nearly circular Colônia structure, located at the southwestern edge of the city of São Paulo, Brazil, has been the subject of a long‐standing debate, ever since the 1960s when the structure was first investigated by geophysical methods. The structure still raises interest for geological research, as its sedimentary infill holds important paleoclimatic information about the evolution of the tropical rainforest, as well as the interplay between the South American summer monsoon, the Intertropical Convergence Zone, and the southern Westerly wind belt—for possibly as long as several million years. In addition, the search for evidence to conclusively establish the origin of this structure continues, and the answer most likely lies in the lower portions of the basin's sedimentary infill, which also holds a significant potential for underground water resources. Here, we present the results from recent seismic (reflection and HVSR), gravimetric, and geoelectrical surveys. They have provided a reliable image of the sedimentary infill, and the maximum depth to basement within the structure has been constrained consistently by the different methods to approximately ?400 m. The geophysical data have also allowed to map the lateral contact between the crystalline basement rocks and the sedimentary infill, which indicates a diameter of approximately 2.8 km for the sedimentary basin, with 3.6 km being the diameter of the outermost limit of the structure. A total of six seismic stratigraphic boundaries were identified within the sedimentary infill, providing a framework for the planning of a deep drilling campaign and subsequent sampling program aimed at geological and paleoclimatology studies.  相似文献   

14.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

15.
Abstract— Meteorite impacts are associated with locally profound effects for microorganisms living at the terrestrial surface and the subsurface of the impact zone. The Bosumtwi crater in Ghana (West Africa) is a relatively young (1.07 Myr) structure with a rim‐to‐rim diameter of about 10.5 km. In a preliminary study targeting the subsurface microbial life in the impact structure, seven samples of the impact breccia from the central uplift of the Bosumtwi crater were analyzed for the presence of typical archaeal membrane‐lipids (GDGTs). These have been detected in four of the samples, at a maximum depth of 382 m below the lake surface, which is equivalent to 309 m below the surface sediment. The concentration of the GDGTs does not show a trend with depth, and their distribution is dominated by GDGT‐0. Possible origins of these lipids could be related to the soils or rocks predating the impact event, the hydrothermal system generated after the impact, or due to more recent underground water  相似文献   

16.
Abstract— The central uplift of the 40-km wide Araguainha impact structure, Brazil, consists of a ring, about 8 km in diameter, of up to 150-m high blocks of Devonian Furnas sandstone, which surround a central depression of elliptical shape (4.5 × 3.0 km). The depression is occupied by a pre-Devonian alkali-feldspar granite, shocked by pressures of 20–25 GPa and permeated by cataclastic shear zones and dikes of shocked granitic material. The granite is flanked and partly covered by several impact breccias: (1) Impact breccia with melt matrix overlies the granite in places and forms hills, bordering the granitic center in the S and SW. It is chemically identical with the granite and consists of thermally altered granitic clasts in a matrix of sanidine, quartz, biotite, muscovite, chlorite and riebeckite. (2) Polymict breccias form hills which border the central depression in the N and NW. Components are unshocked and shocked sediments, shock-melted sandstone, shocked granite and shock melt rocks in irregular masses and individual bodies, embedded in a fine-grained matrix. 40Ar/39Ar analyses show that the melt rocks solidified 246 Ma ago, indicating that the impact occurred at near the Permian-Triassic boundary, possibly when the area was covered by a shallow sea. The present chemistry and petrography of the melt rocks suggest that by reacting with seawater granitic impact melt was depleted of K and Rb and enriched in Na, and that later diagenetic processes produced replacement of feldspar by quartz and deposition of hematite. (3) Monomict breccias, consisting of unshocked, shocked and shock-fused quartz sandstones, form hills which surround the central depression in the SE and S. The Araguainha structure is an eroded complex crater, produced by an impact, 246 Ma ago. The depth of excavation was about 2.4 km, comprising Permian, Permo-Carboniferous and Devonian sediments and the granitic basement. The diameter of the transient crater was about 24 km. Erosion and weathering have removed most of the original crater fill and ejecta deposits, with the exception of remnants, preserved in the central uplift.  相似文献   

17.
Abstract— The applicability of the Euler deconvolution method in imaging impact crater structure vis‐à‐vis delineation of source depth of the circular magnetic anomaly and/or basement depth beneath the crater is addressed in this paper. The efficacy of the method has been evaluated using the aeromagnetic data obtained over the Serra da Cangalha impact crater, northeastern Brazil. The analyses of the data have provided characteristic Euler deconvolution signatures and structural indices associated with impact craters. Also, through the interpretation of the computed Euler solutions, our understanding of the structural features present around the impact structure has been enhanced. The Euler solutions obtained indicate shallow magnetic sources that are interpreted as possibly post‐impact faults and a circular structure. The depth of these magnetic sources varies between 0.8 and 2.5 km, while the Precambrian basement depth was found at ?1.5 km. This is in good agreement with the estimates of the Precambrian basement depth of about 1.1 km, calculated using aeromagnetic data. The reliability of the depth solutions obtained through the implementation of the Euler method was confirmed through the use of the existing information available in the area and the result of previous studies. We find that the Euler depth solutions obtained in this study are consistent with the results obtained using other methods.  相似文献   

18.
Abstract— The Lockne and Tvären craters formed about 455 million years ago in an epicontinental sea where seawater and mainly limestones covered a crystalline basement. The target water depth for Tvären (apparent basement crater diameter D = 2 km) was probably not over 150 m, and for Lockne (D = 7.5 km) recent best‐fit numerical simulations suggest the target water depth of 500–700 m. Lockne has crystalline ejecta that partly cover an outer crater (14 km diameter) apparent in the target sediments. Tvären is eroded with only the crater infill preserved. We have line‐logged cores through the resurge deposits within the craters in order to analyze the resurge flow. The focus was clast lithology, frequencies, and size sorting. We divide the resurge into “resurge proper,” with water and debris shooting into the crater and ultimately rising into a central water plume, “anti‐resurge,” with flow outward from the collapsing plume, and “oscillating resurge” (not covered by the line‐logging due to methodological reasons), with decreasing flow in diverse directions. At Lockne, the deposit of the resurge proper is coarse and moderately sorted, whereas the anti‐resurge deposit is fining upwards and better sorted. The Tvären crater has a smoothly fining‐up section deposited by the resurge proper and may lack anti‐resurge deposits. At Lockne, the content of crystalline relative to limestone clasts generally decreases upwards, which is the opposite of Tvären. This may be a consequence of factors such as crater size (i.e., complex versus simple) and the relative target water depth. The mean grain size (i.e., the mean ‐phi value per meter, ø) and standard deviation, i.e., size sorting (s?) for both craters, can be expressed by the equation s? = 0.60ø ? 1.25.  相似文献   

19.
Impact structures in the crystalline rocks of the Canadian Shield range over two orders of magnitude in size and display morphologies recognized elsewhere in the solar system. This contribution draws upon new examinations of drill core from Canadian craters to reaffirm some relationships, modify others, and refine the transitions from simple to complex with central peak to peak‐ring structures. These include recognizing the hyperbolic form of transient craters, sharpening the allochthon–parautochthon distinction, and proposing new formulae for key relationships. It emphasizes the role of dynamic tensile strength and the attenuation of tensile rarefaction waves in determining the size of both transient and final crater dimensions. On Earth, depth (d) to diameter (D) ratios are not invariant at about 1:10 but change smoothly with size from 1:3 at Brent through 1:5 to 1:10 in the largest; that is, d = 0.4 D0.75. In craters in crystalline rocks, the central peak grows at about uplift = 0.175 D until, at D about 28 km, the uplift rises above the original surface then collapses to form a peak‐ring structure. These relationships demonstrate the dominant role of gravity in attenuating tensile rarefaction waves and controlling transient crater depth and overall size relative to the volume shocked.  相似文献   

20.
Abstract— Although mapped initially as a piercement dome, subsequent discovery of shock metamorphism in clasts of an impact breccia, shatter cones in outcrops of uplifted target rocks and morphological and geophysical characteristics consistent with a complex crater, confirmed a meteorite impact origin for the Haughton structure, Devon Island. Results of three field investigations carried out prior to 1984 defined a complex crater, 20 km in diameter, formed in a lower Paleozoic sedimentary sequence overlying gneisses of the Precambrian basement. The distribution of allochthonous breccia overlying the disturbed target rocks and of the sediments deposited in the crater-filling lake were mapped. A Miocene or possibly Holocene age for the crater was based on paleo-flora and fauna assemblages from the lake sediments. Gravity and magnetic surveys revealed anomalies coincident with the crater, but not interpretable from surface lithologies. Some of the early investigations were of a reconnaissance nature and results and interpretation can only be considered preliminary. Other studies that were carried out in some detail, petrographic investigations in particular, require complementary work for a fuller understanding of their significance. As a result, in 1984 the HISS (Haughton Impact Structure Studies) group carried out a program of detailed geological mapping and sampling, and seismic, gravity, and magnetic surveys in an attempt to improve the definition of the surface and subsurface nature of Haughton, and to formulate a more complete understanding of its formation and subsequent history. Results of these various studies are presented in the eight succeeding papers of this volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号