首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The configuration of Alpine accumulation areas during the last glacial maximum (LGM) has been reconstructed using glacial–geological mapping. The results indicate that the LGM ice surface consisted of at least three major ice domes, all located south of the principal weather divide of the Alps. This implies that the buildup of the main Alpine ice cover during oxygen isotope stage (OIS) 2 was related to precipitation by dominant southerly atmospheric circulation, in contrast to today's prevalent westerly airflow. Such a reorganization of the atmospheric circulation is consistent with a southward displacement of the Oceanic Polar Front in the North Atlantic and of the associated storm track to the south of the Alps. These results, combined with additional paleoclimate records from western and southern Europe, allow an interpretation of the asynchronous evolution of the different European ice caps during the last glaciation. δ18O stages (OIS) 4 and 3 were characterized by location of the Polar Front north of 46°N (Gulf of Biscay). This affected prevailing westerly circulation and, thus, ice buildup in western Scandinavia, the Pyrénées, Vosges, and northern Alps. At the LGM, however, the Polar Front lay at 44°N, causing dominating southerly circulation and reduced precipitation in central and northern Europe.  相似文献   

2.
Three main phases of ice-movement pattern in South Norway during the Weichselian are reconstructed. During Phase II (possibly of Middle Weichselian age) the ice divide was located far to the west. Phase III (assumed Middle/Late Weichselian age) had an easterly situated ice divide. During Phase IV (Preboreal age) the ice divide had moved back to the west and had partly fragmented into separate domes. The migration of the ice divide from west to east may be due to glacier surges, whilst the ice-divide migration from Phase III to IV was probably a result of a general reduction in size of the ice sheet.  相似文献   

3.
A revised lithostratigraphy of Skåne, South Sweden, constitutes the basis of an alternative Weichselian glaciation model for southern Scandinavia, progressively anchored to the stratigraphy. Skåne was not glaciated during the Weichselian until 21,000 B.P. The concepts, outlet surge and marginal dome (the main tools of the model) are defined. The palaeogeography of the Baltic and Kattegatt basins during the Mid-Weichselian are reconstructed. Shorelines, during the advance stage, are calculated from an inferred proglacial depression. Outlet surges, which occurred in three basins of the Baltic, guided the ice sheet during its growth. The growth of marginal domes on the outlet surge lobes resulted in changes in the configuration of the ice sheet and in the lowering of its surface profile. The South Scandinavian ice divide became located over a former outlet surge lobe NNE-NE of the island of Gotland in the northern Baltic. This gave the main ice in South Sweden and Denmark a NE ice movement during the whole glaciation until the deglaciation of SE Sweden. The Kattegatt Ice Lake was formed due to damming in the Skagerack area. Surging ice tilled in the basin resulting in the formation of vast areas of stagnant ice in front of the advancing NE-ice. Marginal domes were formed on these giving rise to the early glacial episodes in the southwest of Sweden and Denmark. During the deglactanon, tnree pnases of marginal dome formation are recorded in the soutnern Baltic area and the growth of these domes resulted in the East Jylland advance, the Bælthav readvance and the Simrishamn readvance. The marginal domes were formed on vast fields of stagnant ice left behind by the receding main ice. Baltic erratics, englacially present in the main ice as well as in the stagnant ice in front of it, were transported (stepwise) towards the west and northwest, partly by the advancing marginal domes and partly by ice streams formed between the marginal domes and the main (NE-) ice. It is argued that the classical, so-called Low Baltic ice stream in the sense of a readvancing glacier lobe never existed. The first two marginal domes collapsed due to starvation and the ice movement returned gradually to the independent NE ice movement of the main ice. The third marginal dome collapsed due to a downdraw caused by a large transgression recorded in the Kattegatt and the Öresund regions. The transgression took place roughly around 13,300 B.P. and was possibly caused by damming of the Kattegatt basin in the north in connection with a marine downdraw. The collapse of the third marginal dome and the subsequent ‘ice lake downdraw’ of the dome centre NNE-NE of Gotland took place during a cold period of the deglaciation. This resulted in an extremely high recessional rate on the Swedish cast coast compared with the west coast and a contemporaneous westwards displacement of the South Scandinavian ice divide. After the downdraw, the recession rate on the east coast slowed down markedly and became more or less equal to that of the west coast. Pure dynamic causes for the extremely high recession rate in SE Sweden are expected because the decrease in this rate coincides with the onset of a recorded, marked climatic amelioration at around 12,600 B.P. Formation of the marginal domes during the deglaciation indicates periods of increased cyclon activity at the southwest margin of the Weichsclian Scandinavian ice sheet alternating with periods of ice sheet starvation. Detailed modelling of the marginal domes is therefore expected to have significant palaeoclimatic implications. The marginal dome concept is believed to he useful also in the reconstruction of earlier glaciations.  相似文献   

4.
The last glacial maximum (LGM) of the Scandinavian ice sheet in the Arkhangelsk region has been identified morphologically as ridges and hummocks in an otherwise flat topography. Stratigraphically the limit is marked by the presence of till above Mikhulinian (last interglacial) sediments inside the ridges and by the absence of till outside the ridges. During the LGM, ice flowed into the region from the north and northwest forming a lobe in the Dvina-Vaga depression. The continuation northward, northeast of Arkhangelsk, is still somewhat uncertain, but evidence suggests that the outer margin of the Scandinavian ice sheet was situated in the Mezen drainage basin. Luminescence and radiocarbon dates suggest that the maximum position was attained after some 17 ka ago, and that deglaciation started close to 15 ka ago. This age for the maximum position is younger than the maximum position in the western peripheral areas of the Scandinavian ice sheet. This may be accounted for by initial ice build-up in the west followed by a successive migration of the ice divide(s) to the east as ice growth continued. Deglaciation was either by lateral retreat or isolation of dead ice masses causing areal downwasting.  相似文献   

5.
A considerable portion of Northern Eurasia, and particularly its continental shelf, was glaciated by inland ice during late Weichsel time. This was first inferred from such evidence as glacial striae, submarine troughs, sea-bed diamictons, boulder trains on adjacent land, and patterns of glacioisostatic crustal movements. Subsequently, the inference was confirmed by data on the occurrence and geographic position of late Weichselian end moraines and proglacial lacustrine deposits.The south-facing outer moraines in the northeastern Russian Plain, northern West Siberia, and on Taimyr Peninsula are underlain by sediments containing wood and peat, the radiocarbon dating of which yielded ages of 22,000 to 45,000 yr B.P. The youngest late-glacial moraines are of Holocene age: the double Markhida moraine in the lower Pechora River basin, presumably associated with “degradational” surges of the Barents Ice Dome, is underlain by sediments with wood and peat dated at 9000 to 9900 yr B.P.: this suggests that deglaciation of the Arctic continental shelf of Eurasia was not completed until after 9000 yr B.P.The reconstructed ice-front lines lead to the conclusion that the late Weichselian ice sheet of Northern Eurasia (proposed name: the Eurasian Ice Sheet) extended without interruptions from southwestern Ireland to the northeastern end of Taimyr Peninsula, a distance of 6000 km: it covered an area of 8,370,000 km2, half of which lay on the present-day continental shelves and a quarter on lowlands that were depressed isostatically below sea level. Hence, the ice sheet was predominantly marine-based.A contour map of the ice sheet based both on the dependence of the heights of ice domes upon their radii and on factual data concerning the impact of bedrock topography upon ice relief has been constructed. The major features of the ice sheet were the British, Scandinavian, Barents, and Kara Ice Domes that had altitudes of 1.9 to 3.3 km and were separated from one another by ice saddles about 1.5 km high. At the late Weichselian glacial maximum, all the main ice-dispersion centers were on continental shelves and coastal lowlands, whereas mountain centers, such as the Polar Urals and Byrranga Range, played only a local role.The portions of the ice sheet that were grounded on continental shelves some 700 to 900 m below sea level were inherently unstable and could exist only in conjunction with confined and pinned floating ice shelves that covered the Arctic Ocean and the Greenland and Norwegian Seas.The Eurasian Ice Sheet impounded the Severnaya Dvina, Mezen, Pechora, Ob, Irtysh, and Yneisei Rivers, and caused the formation of ice-dammed lakes on the northern Russian Plain and in West Siberia. Until about 13,500 yr B.P. the proglacial system of lakes and spillways had a radial pattern; it included large West Siberian lakes, the Caspian and Black Seas, and ended in the Mediterranian Sea. Later, the system became marginal and discharged proglacial water mainly into the Norwegian Sea.  相似文献   

6.
This is a synthesis of the glacial history of the northern Urals undertaken using published works and the results of geological surveys as well as recent geochronometric and remote sensing data. The conclusions differ from the classical model that considers the Urals as an important source of glacial ice and partly from the modern reconstructions. The principal supporting evidence for the conventional model – Uralian erratics found on the adjacent plains – is ambiguous because Uralian clasts were also delivered by a thick external ice sheet overriding the mountains during the Middle Pleistocene. Alternative evidence presented in this paper indicates that in the late Quaternary the Ural mountains produced only valley glaciers that partly coalesced in the western piedmont to form large piedmont lobes. The last maximum glaciation occurred in the Early Valdaian time at c. 70–90 ka when glacial ice from the Kara shelf invaded the lowlands and some montane valleys but an icecap over the mountains was not formed. The moraines of the alpine glaciation are preserved only beyond the limits of the Kara ice sheet and therefore cannot be younger than MIS 4. More limited glaciation during MIS 2 generated small alpine moraines around the cirques of the western Urals (Mangerud et al. 2008: Quaternary Science Reviews 27, 1047). The largest moraines of Transuralia were probably produced by the outlet glaciers of a Middle Pleistocene ice sheet that formed on the western plains and discharged across the Polar Urals. The resultant scheme of limited mountain glaciation is possibly also applicable as a model for older glacial cycles.  相似文献   

7.
The last ice sheet over the British Isles, together with other mid-latitude Pleistocene ice sheets, and in contrast to the modern ice sheets of Greenland and Antarctica, had a relatively low profile, low summit elevation and extensive, elongated lobes at its margin. A thermo-mechanically coupled numerical ice sheet model, driven by a proxy climate, has been used to explore the properties that would have permitted these characteristics to develop. The approach, the key to quantitative palaeoglaciology, is to determine the boundary conditions that permit the simulated ice sheet to mimic the evolution of the real ice sheet through the last glacial cycle. Simulations show how a British ice sheet may have been confluent with a Scandinavian ice sheet during some parts of its history and how unforced periodic and asynchronous oscillations could occur in different parts of its margins. Marginal lobes are a reflection of streaming within the ice sheet. Such streams can be ephemeral, dynamic streams located because of ice sheet properties, or fixed streams whose location is determined by bed properties. The simulations that best satisfy constraints of extent, elevation and relative sea levels are those with major fixed streams that strongly draw down the ice sheet surface. In these, the core upland areas of the ice sheet were cold based at the Last Glacial Maximum, basal streaming velocities were between 500 and 1000 ma−1 compared with surface velocities of 10–50 ma−1 in inter-stream zones, shear stresses were as low as 15–25 kPa in streams compared with 70–110 kPa in upland areas and 60–84% of the ice flux was delivered to the margin via streams.  相似文献   

8.
The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22–40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.  相似文献   

9.
The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel – Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.  相似文献   

10.
The now acknowledged thinning of the Greenland Ice Sheet raises concerns about its potential contribution to future sea level rise. In order to appreciate the full extent of its contribution to sea level rise, reconstruction of the ice sheet's most recent last deglaciation could provide key information on the timing and the height of the ice sheet at a time of rapid climate readjustment. We measured 10Be concentrations in 12 samples collected along longitudinal and altitudinal transects from Sisimiut to within 10 km of the Isunguata Sermia Glacier ice margin on the western coast of Greenland. Along the longitudinal transect, we collected three perched boulders and two bedrocks. In addition, we sampled seven perched boulders along a vertical transect in a valley within 10 km of the Isunguata Sermia Glacier ice margin. Our pilot dataset constrains the height of the ice sheet during the Last Glacial Maximum (LGM) between 500 m and 840 m (including the 120 m relative sea level depression at the time of the LGM, 21 ka BP). From the transect we estimate the thinning of the ice sheet at the end of the deglaciation between 12.3 ± 1.5 10Be ka (n = 2) and 8.3 ± 1.2 10Be ka (n = 3) to be ~6 cm a?1 over this time period. Direct dating of the retreat of the western margin of the Greenland Ice Sheet has the potential to better constrain the retreat rate of the ice margin, the thickness of the former ice sheet as well as its response to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The Tyne Gap is a wide pass, situated between the Scottish Southern Uplands and the English Pennines that connects western and eastern England. It was a major ice flow drainage pathway of the last British–Irish Ice Sheet. This study presents new glacial geomorphological and sedimentological data from the Tyne Gap region that has allowed detailed reconstructions of palaeo‐ice flow dynamics during the Late Devensian (Marine Isotope Stage 2). Mapped lineations reveal a complex palimpsest pattern which shows that ice flow was subject to multiple switches in direction. These are summarised into three major ice flow phases. Stage I was characterised by convergent Lake District and Scottish ice that flowed east through the Tyne Gap, as a topographically controlled ice stream. This ice stream was identified from glacial geomorphological evidence in the form of convergent bedforms, streamlined subglacial bedforms and evidence for deformable bed conditions; stage II involved northerly migration of the Solway Firth ice divide back into the Southern Uplands, causing the easterly flow of ice to be weakened, and resulting in southeasterly flow of ice down the North Tyne Valley; and stage III was characterised by strong drawdown of ice into the Irish Sea Ice Basin, thus starving the Tyne Gap of ice and causing progressive ice sheet retreat westwards back across the watershed, prior to ice stagnation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Th/U dating and radiocarbon dating of 'old' shells are discussed, and amino acid ratios from shells are used as a method of relative-age dating. The Svalbard area has been completely covered by an extensive ice sheet at leats once. New data from Sjuøyane indicate that such glaciation took place in the Early Weichselian. The Middle Weichselian was a period of interstadial conditions. Series of beaches of assumed Middle Weichselian age occur in several places in western Spitsbergen while no such beaches are known in the eastern part of the archipelago. The maximum glaciation in the Late Weichselian is assumed to have taken place about 18,000 B.P. In the western part of Spitsbergen, the Late Weichselian glaciation was limited and local, while the eastern part of the archipelago was covered by an ice sheet. Kongsøya has a pattern of Holocene shoreline displacement which indicates that the centre of this ice sheet was east of kong karts Land.  相似文献   

13.
冰雷达探测研究南极冰盖的进展与展望   总被引:3,自引:0,他引:3  
南极冰盖是地球上最大的陆缘冰体,其物质收支和稳定性对全球气候变化和海平面升高有重要的影响。冰雷达,或称无线电回波探测,是冰川学家调查南极冰盖冰下特征的主要方法。在过去的50年里,冰雷达被广泛用于测量冰盖厚度、内部构造和冰下地貌,这些参数是计算冰盖体积和物质平衡、重建过去冰雪积累和消融率以及冰盖动力和沉积过程的基础。现在,冰雷达测量覆盖了南极绝大部分区域,极大地提升了人们对南极冰盖和全球系统间相互作用的理解。首先,简要介绍了冰雷达及其技术发展,然后着重评述了冰雷达在探测研究南极冰盖厚度和冰下地形、内部反射层、冰下湖和冰下水系、冰床粗糙度以及冰晶组构上的进展。最后,对未来冰雷达探测研究南极冰盖的前景进行了展望,并给出我国的现状。


  相似文献   

14.
《Quaternary Science Reviews》2007,26(11-12):1529-1546
Basaltic table mountains in the neovolcanic zones of Iceland have been interpreted as subglacial volcanoes that emerged through an ice sheet. Using their distinctive morphological and lithostratigraphic characteristics, the approximate surface elevation and thickness of the ice sheet at the time of eruption can be determined. We measured cosmogenic 3He concentrations in olivine phenocrysts from subaerially erupted basaltic lava caps of table mountains to determine their exposure ages. We argue that these exposure ages closely approximate eruption ages; the possibility of past snow cover is the main uncertainty. The resulting 3He exposure (eruption) ages, calculated using a locally derived 3He production rate calibration, and comprising 42 individual ages from 13 table mountains, allow reconstruction of ice sheet surface profiles through time. The new 3He chronology indicates that 12 of the 13 dated table mountains experienced their final eruptive phase during the last deglaciation. This eruptive chronology is broadly consistent with the hypothesis that melt production in Iceland is enhanced by pressure release from ice sheet unloading during deglaciation. The clustered distribution of table mountain ages suggests that distinct episodes of ice sheet thinning may have coincided with, or closely followed, the two strongest warming events in the North Atlantic region during the last deglaciation: the Bølling warming (ca 14.5 ka) and the warming at the end of the Younger Dryas.  相似文献   

15.
During decline of the last British–Irish Ice Sheet (BIIS) down‐wasting of ice meant that local sources played a larger role in regulating ice flow dynamics and driving the sediment and landform record. At the Last Glacial Maximum, glaciers in north‐western England interacted with an Irish Sea Ice Stream (ISIS) occupying the eastern Irish Sea basin (ISB) and advanced as a unified ice‐mass. During a retreat constrained to 21–17.3 ka, the sediment landform assemblages lain down reflect the progressive unzipping of the ice masses, oscillations of the ice margin during retreat, and then rapid wastage and disintegration. Evacuation of ice from the Ribble valley and Lancashire occurred first while the ISIS occupied the ISB to the west, creating ice‐dammed lakes. Deglaciation, complete after 18.6–17.3 ka, was rapid (50–25 m a?1), but slower than rates identified for the western ISIS (550–100 m a?1). The slower pace is interpreted as reflecting the lack of a calving margin and the decline of a terrestrial, grounded glacier. Ice marginal oscillations during retreat were probably forced by ice‐sheet dynamics rather than climatic variation. These data demonstrate that large grounded glaciers can display complex uncoupling and realignment during deglaciation, with asynchronous behaviour between adjacent ice lobes generating complex landform records.
  相似文献   

16.
This paper presents a major revision of the Late Devensian Lateglacial environmental history of the Isle of Skye, Scotland, based upon a combination of geomorphological, biostratigraphical and radiocarbon evidence. The distribution of glacial and periglacial landforms, and of raised shorelines, suggests that there was only one extensive readvance of local glaciers in southern Skye following the wastage of the Late Devensian ice sheet. Pollen-stratigraphic evidence from 10 sites inside and 4 sites outside the mapped ice limits indicates that this readvance occurred during the Loch Lomond Stadial. At that time over 180km2 of the uplands of south-central Skye were covered by glacier ice, a much more extensive glaciation than previously envisaged. Palynological evidence from four Lateglacial profiles implies that degree of exposure to strong westerly winds was the principal factor determing vegetational contrasts on the island, and that regional differences in vegetational type were less pronounced than has hitherto been suggested. The glacial and palaeobotanical reconstructions reported here are more compatible with Lateglacial data from the Scottish mainland and Hebridean islands than were the previously-published accounts for the Isle of Skye.  相似文献   

17.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   

18.
A database comprising some ~5200 individual striation measurements on bedrock surfaces across the island of Ireland was used to produce maps of flowsets corresponding to individual ice flow events during the last (late Devensian) glacial cycle. These flowsets were identified on the basis of regional-scale correspondence between striae orientations which, when linked together spatially, are able to identify consistent ice flow vectors. Four main chronological stages are identified on the basis of this evidence: (i) incursion of Scottish ice into Ireland; (ii) glacial maximum conditions; (iii) ice retreat and dissolution; and (iv) development of localised ice domes. Striae-based reconstructions of the glaciology of the last Irish ice sheet are qualitatively different from those based on bedform (mainly drumlin and ribbed moraine) evidence. Significant differences are apparent in upland areas which have fewer preserved bedforms and a higher concentration of striae. Combining bedform and striae datasets will enable a better understanding of the temporal evolution of the ice sheet. It is likely that both datasets record a snapshot of ice flow direction and subglacial conditions and environments immediately prior to preservation of this directional evidence.  相似文献   

19.
A region of high heads within the Borrowdale Volcanic Group (BVG; a fractured crystalline rock) beneath the coastal plain of West Cumbria, England (UK), is identified as a possible relic left over by the Late Devensian ice sheet. It was found during investigations in the 1990s. Contemporary modelling work failed to produce a satisfactory explanation of the high heads compatible with the ‘cold recharge’ isotopic signature of the groundwater. This study has reassessed the original hydraulic testing results. By plotting density-adjusted heads versus their depth below the water table in the immediate vicinity of the borehole in which they were measured, a depth profile resembling a ‘wave’ was revealed with a peak value located at 1,100 m depth. The possibility that this wave represents relic heads from the last major ice sheet has been assessed using one-dimensional mathematical analysis based on a poroelastic approach. It is found that a wet-based ice sheet above the West Cumbrian coast was probably thick enough and sufficiently long-lasting to leave such relic heads providing that the hydraulic diffusivity of the BVG is in the order of 10?6 m s?1. Initial assessment 20 years ago of the long-interval slug tests suggested that such low values are not likely. More recent interpretation argues for such low values of hydraulic diffusivity. It is concluded that ice sheet recharge is the most likely cause of the raised heads, that the BVG contains significant patches of very low conductivity rock, and that long-interval single-hole tests should be avoided in fractured crystalline rock.  相似文献   

20.
The Tibetan Plateau is a topographic feature of extraordinary dimension and has an important impact on regional and global climate. However, the glacial history of the Tibetan Plateau is more poorly constrained than that of most other formerly glaciated regions such as in North America and Eurasia. On the basis of some field evidence it has been hypothesized that the Tibetan Plateau was covered by an ice sheet during the Last Glacial Maximum (LGM). Abundant field- and chronological evidence for a predominance of local valley glaciation during the past 300,000 calendar years (that is, 300 ka), coupled to an absence of glacial landforms and sediments in extensive areas of the plateau, now refute this concept. This, furthermore, calls into question previous ice sheet modeling attempts which generally arrive at ice volumes considerably larger than allowed for by field evidence. Surprisingly, the robustness of such numerical ice sheet model results has not been widely queried, despite potentially important climate ramifications. We simulated the growth and decay of ice on the Tibetan Plateau during the last 125 ka in response to a large ensemble of climate forcings (90 members) derived from Global Circulation Models (GCMs), using a similar 3D thermomechanical ice sheet model as employed in previous studies. The numerical results include as extreme end members as an ice-free Tibetan Plateau and a plateau-scale ice sheet comparable, in volume, to the contemporary Greenland ice sheet. We further demonstrate that numerical simulations that acceptably conform to published reconstructions of Quaternary ice extent on the Tibetan Plateau cannot be achieved with the employed stand-alone ice sheet model when merely forced by paleoclimates derived from currently available GCMs. Progress is, however, expected if future investigations employ ice sheet models with higher resolution, bidirectional ice sheet-atmosphere feedbacks, improved treatment of the surface mass balance, and regional climate data and climate reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号