首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The dependence of the particle energy spectra on the acceleration and loss rates is studied based on the analytical solutions to the equation for the particle distribution function, taking into account diffusion in the momentum space (stochastic acceleration) and loss (due to particle escape from the acceleration region). The energy spectra and time dynamics of the MeV electron fluxes, observed based on the geostationary satellite data during the prolonged recovery phases of the known magnetic storms of June 11, 1980 and November 3–4, 1993, have been analytically described. The acceleration and loss rates have been estimated for these storms. A comparison is performed with the preciously studied energy spectra of MeV electrons and with the acceleration and loss rates during the recovery phases of the magnetic storms of January 10, 1997, and April 6, 2000.  相似文献   

2.
The energy spectrum of electrons with energies of 0.8–6.0 MeV has been analyzed based on the data of the Express-A2 geostationary satellite and time variations in the fluxes of electrons with energies higher than 0.6 and 2 MeV (according to the GOES-10 satellite data) before and after a weak geomagnetic storm on April 9–10, 2002, which developed during the prolonged (about ten days) recovery phase of a strong magnetic storm on April 6, 2000. The effect of the secondary injection and acceleration caused by an intensification of substorm activity during a weak storm on the electron flux dynamics has been studied for the first time. The energy spectra and time variations in the electron flux dynamics before and after a weak storm have been described based on analytical solutions to the kinetic equation for the electron distribution function with regard to the stochastic acceleration and loss rates. It has been established that there were different acceleration and loss rates before and after the weak storm of April 9–10, 2000.  相似文献   

3.
The electron energy spectrum in the energy range of 0.8–6.0 MeV and the time dynamics of electron fluxes during the prolonged (~10 days) recovery phase of the magnetic storm of April 6, 2000, have been analyzed using the Express-A2 geostationary satellite data. These data have been interpreted based on the analytical solution to the nonstationary equation for the particle distribution function taking into account statistical acceleration and catastrophic particle escape from the acceleration region.  相似文献   

4.
The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied. We are able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.  相似文献   

5.
The accelerated particle energy spectra in different energy intervals (from 0.06 to 75.69 MeV n–1) have been constructed for various powerful flare events (1997–2006) with the appearance of solar cosmic rays (SCRs) based on the processing of data from the Advanced Composition Explorer (ACE) and WIND spacecraft. Flares were as a rule accompanied by coronal mass ejections. Different specific features in the particle spectra behavior, possibly those related to different acceleration processes, were revealed when the events developed. The Fe/O abundance ratio in different energy intervals during the disturbed development of flareinduced fluxes has been qualitatively estimated. It has been established that ground level event (GLE) fluxes represent an individual subclass of gradual events according to the character of Fe/O variations. The manifestations of the first ionization potential (FIP) effect in the composition of SCRs during their propagation have been qualitatively described.  相似文献   

6.
地球电子外辐射带对太阳与地磁活动呈现高度动态变化的响应,了解外辐射带的全球动态变化过程对于近地空间粒子辐射环境的理解认知和预测预报具有重要意义.基于卡尔曼滤波数据同化方法,本文利用范阿伦A星、B星和GOES-13和GOES-15四颗卫星的辐射带电子观测数据,分别利用三种不同维度的辐射带物理模型,将观测结果与数值结果有机融合,对2013年3月地球外辐射带电子通量的径向分布与变化进行数据同化分析.结果表明,考虑了磁层波动与辐射带电子共振作用引起的径向扩散、投掷角扩散以及能量扩散过程的三维同化模型可有效、合理地重现外辐射带电子通量的径向分布.本文进一步利用该三维同化模型对2013年一整年外辐射带电子的相空间密度分布进行重构与分析,得到了不同绝热不变量和不同地磁活动条件下电子辐射带的时空演化过程,从而为深入理解外辐射带电子的变化过程和动力学机制提供了强有力信息.通过分析同化过程中的新息矢量以及度量同化过程中观测数据在多大程度上修改了物理模型结果,还有助于定量分析现有辐射带物理模型中的源项和损失项的相对贡献以及可能忽略的物理机制或过程.  相似文献   

7.
Understanding the dynamics of the Earth’s radiation belts is important for modeling and forecasting the intensities of energetic electrons in space. Wave diffusion processes are known to be responsible for loss and acceleration of electrons in the radiation belts. Several recent studies indicate pitch angle and energy mixed-diffusion are also important when considering the total diffusive effects. In this study, a two-dimensional Fokker Planck equation is solved numerically using the Alternating Direction Implicit method. Mixed diffusion due to whistler-mode chorus waves tends to slow down the total diffusion in the energy-pitch angle space, particularly at smaller equatorial pitch angles. We then incorporate the electron energy and pitch angle mixed diffusions due to whistler-model chorus waves into the 4-dimensional Radiation Belt Environment (RBE) model and study the effect of mixed diffusion during a storm in October 2002. The 4-D simulation results show that energy and pitch angle mixed diffusion decrease the electron fluxes in the outer belt while electron fluxes in the slot region are enhanced (up to a factor of 2) during storm time.  相似文献   

8.
The relation of the fluxes of relativistic electrons in geostationary orbit during magnetic storms to the state of the magnetosphere and variations in the solar wind parameters is studied based on the GOES satellite data (1996–2000). It has been established that, in ~52–65% of all storms, the fluxes of electrons with energies higher than 0.6 and 2 MeV during the storm recovery phase are more than twice as high as the electron fluxes before a storm. It has been indicated that the probability of such cases is closely related to the prestorm level of fluxes and to a decrease in fluxes during the storm main phase. It has been found that the solar wind velocity on the day of the storm main phase and the geomagnetic activity indices at the beginning of the storm recovery phase are also among the best indicators of occurrence of storms with increased fluxes at the storm recovery phase.  相似文献   

9.
The study of variations in the electron flux in the outer Earth radiation belt (ERB) and their correlations with solar processes is one of the important problems in the experiment with the Electron-M-Peska instrument onboard the CORONAS-Photon solar observatory. Data on relativistic and subrelativistic electron fluxes obtained by the Electron-M-Peska in 2009 have been used to study the outer ERB dynamics at the solar minimum. Increases in outer ERB relativistic electron fluxes, observed at an height of 550 km after weak magnetic disturbances induced by high-velocity solar wind arriving to the Earth, have been analyzed. The geomagnetic disturbances induced by the high-velocity solar wind and that resulted in electron flux variations were insignificant: there were no considerable storms and substorms during that period; however, several polar ground-based stations observed an increase in wave activity. An assumption has been made that the wave activity caused the variations in relativistic electron fluxes.  相似文献   

10.
Using two-hour (from 2300 UT January 25, 2013 to 0100 UT January 26, 2013) measurement data from Van Allen Probes on fluxes of energetic particles, cold plasma density, and magnetic field magnitude, we have calculated the local growth rate of electromagnetic ion–cyclotron and whistler-mode waves for field-aligned propagation. The results of these calculations have been compared with wave spectra observed by the same Van Allen Probe spacecraft. The time intervals when the calculated wave increments are sufficiently large, and the frequency ranges corresponding to the enhancement peak agree with the frequency–time characteristics of observed electromagnetic waves. We have analyzed the influence of variations in the density and ionic composition of cold plasma, fluxes of energetic particles, and their pitch-angle distribution on the wave generation. The ducted propagation of waves plays an important role in their generation during the given event. The chorus VLF emissions observed in this event cannot be explained by kinetic cyclotron instability, and their generation requires much sharper changes (“steps”) for velocity distributions than those measured by energetic particle detectors on Van Allen Probes satellites.  相似文献   

11.
The relativistic electron fluxes of the Earth's outer radiation belt are subjected to strong temporal variations. The most prominent changes are initiated by fast solar wind streams impinging upon the magnetosphere, which often also cause enhanced substorm activity and magnetic storms. Using 4 years of data from the particle detector REM aboard the UK satellite Strv-1b in a GTO, we investigated the relation between these different appearances of geomagnetic activity. A typical sequence is that there is a drop in the relativistic electron intensity during the main phase of the magnetic storm and a successive enhancement during the recovery phase which sometimes leads to much higher than pre-storm fluxes. Whereas the flux drop is well correlated with the magnetic storm intensity and is mainly due to the deceleration and loss of particles caused by the ring-current-induced magnetic field changes, there is only a bad correlation between the post-storm electron flux and Dst. As we show here, it is much more the level of substorm activity during the whole event which determines the size of the flux enhancements.  相似文献   

12.
In this paper, the particle acceleration processes around magnetotail dipolarization fronts(DFs) were reviewed. We summarize the spacecraft observations(including Cluster, THEMIS, MMS) and numerical simulations(including MHD, testparticle, hybrid, LSK, PIC) of these processes. Specifically, we(1) introduce the properties of DFs at MHD scale, ion scale, and electron scale,(2) review the properties of suprathermal electrons with particular focus on the pitch-angle distributions,(3)define the particle-acceleration process and distinguish it from the particle-heating process,(4) identify the particle-acceleration process from spacecraft measurements of energy fluxes, and(5) quantify the acceleration efficiency and compare it with other processes in the magnetosphere(e.g., magnetic reconnection and radiation-belt acceleration processes). We focus on both the acceleration of electrons and ions(including light ions and heavy ions). Regarding electron acceleration, we introduce Fermi,betatron, and non-adiabatic acceleration mechanisms;regarding ion acceleration, we present Fermi, betatron, reflection, resonance, and non-adiabatic acceleration mechanisms. We also discuss the unsolved problems and open questions relevant to this topic, and suggest directions for future studies.  相似文献   

13.
地球外辐射带是一个高度动态变化的空间环境,辐射带电子通量的变化在磁暴期间尤为明显.要分析潜在的电子动态变化机制,需要排除绝热效应产生的影响.在以三个绝热不变量组成的相空间坐标中,利用相空间密度(PSD)可以反映电子的真实加速和损失情况.本文详细分析两颗范艾伦卫星和三颗GPS导航卫星在2013年3月的同步电子通量观测数据,发现在3月17日磁暴期间,当太阳风动压增大、行星际磁场南向时,辐射带电子通量会发生骤降.进一步将电子通量转换成电子相空间密度并利用不同第一、第二绝热不变量(μ,K)组合条件下PSD径向分布的差异性,深入探究磁暴期间辐射带电子的动态变化机制.结果表明:磁暴初期由于电子的局地加速导致PSD不断上升;磁暴主相期间,由于磁层顶阴影效应以及伴随的向外径向扩散损失导致PSD快速降低;位于不同空间位置的多颗卫星观测为明晰辐射带电子动态物理过程提供了重要的便利.  相似文献   

14.
Results of an analysis of the double layer kinetic characteristics in the case of kappa distributions are presented. The direct and classical double layers and double layers in a trap have been considered. It has been indicated that the restrictions imposed by the Bom-Block criteria are removed if trapped particle populations between the ionosphere and the electrostatic potential jump and between conjugate potential jumps are considered. The dependence of particle fluxes through the double layer in a trap, replacing the Langmuir criterion of a classical double layer, has been obtained. The applicability of the obtained results to the solution of the problem of particle acceleration in the auroral plasma has been discussed. The dependence of the current carried by precipitating magnetospheric electrons on the field-aligned potential jump and kappa distribution characteristics has been obtained.  相似文献   

15.
There are recent observational indications (lack of convergent electric field signatures above the auroral oval at 4 RE altitude) that the U-shaped potential drop model for auroral acceleration is not applicable in all cases. There is nevertheless much observational evidence favouring the U-shaped model at low altitudes, i.e., in the acceleration region and below. To resolve the puzzle we propose that there is a negative O-shaped potential well which is maintained by plasma waves pushing the electrons into the loss cone and up an electron potential energy hill at 3/4RE altitude range. We present a test particle simulation which shows that when the wave energization is modelled by random parallel boosts, introducing an O-shaped potential increases the precipitating energy flux because the electrons can stay in the resonant velocity range for a longer time if a downward electric field decelerates the electrons at the same time when waves accelerate them in the parallel direction. The lower part of the O-shaped potential well is essentially the same as in the U-shaped model. The electron energization comes from plasma waves in this model, but the final low-altitude fluxes are produced by electrostatic acceleration. Thus, the transfer of energy from waves to particles takes places in an energization region, which is above the acceleration region. In the energization region the static electric field points downward while in the acceleration region it points upward. The model is compatible with the large body of low-altitude observations supporting the U-shaped model while explaining the new observations of the lack of electric field at high altitude.  相似文献   

16.
17.
哨声模波对高能电子槽区和外辐射带的调节作用   总被引:5,自引:3,他引:2       下载免费PDF全文
本文利用磁层哨声模嘶声和合声波的幅度分布模型、近赤道背景电子(能量在eV量级)的数密度分布模型和IGRF10磁场模型建立了一个高能电子(能量大于50 keV)准线性扩散模型.模型的数值结果表明,在不同的地磁条件下,等离子体层顶位置的变化改变了磁层背景电子数密度的空间分布,从而改变了哨声模嘶声对高能电子有效的投掷角扩散(损失)区域,同时也改变了哨声模合声波对高能电子有效的动量扩散(加速)区域.哨声模嘶声对电子投掷角扩散区域的变化和RRES卫星探测到的高能电子的槽区变化是一致的,而合声波对电子的动量扩散区域的变化和卫星探测到外辐射带的变化相同.这种对应关系说明:在不同的地磁条件下,哨声模波对高能电子扩散区域的变化是造成高能电子槽区和外辐射带的空间位置和大小变化的一个重要因素.在一些强磁暴期间,由于嘶声对部分能量范围电子的投掷角扩散作用消失,这些电子的槽区也随之消失,从而使内外辐射带连接在一起.  相似文献   

18.
A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ~10000 to ~100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.  相似文献   

19.
The processes of penetration, trapping, and acceleration of solar protons in the Earth’s magneto-sphere during magnetic storms in November 2004 and January 2005 are studied based on the energetic particle measurements on the CORONAS-F and SERVIS-1 satellites. Acceleration of protons by 1–2 orders of magnitude was observed after trapping of solar protons with an energy of 1–15 MeV during the recovery phase of the magnetic storm of November 7–8, 2004. This acceleration was accompanied by an earthward shift of the particle flux maximum for several days, during which the series of magnetic storms continued. The process of relativistic electron acceleration proceeded simultaneously and according to a similar scenario including acceleration of protons. At the end of this period, the intensification was terminated by the process of precipitation, and a new proton belt split with the formation of two maximums at L ~ 2 and 3. In the January 2005 series of moderate storms, solar protons were trapped at L = 3.7 during the storm of January 17–18. However, during the magnetic storm of January 21, these particles fell in the zone of quasi-trapping, or precipitated into the atmosphere, or died in the magnetosheath. At the same time, the belts that were formed in November at L ~ 2 and 3 remained unchanged. Transformations of the proton (and electron) belts during strong magnetic storms change the intensity and structure of belts for a long time. Thus, the consequences of changes during the July 2004 storm did not disappear until November disturbances.  相似文献   

20.
The results of recording the intensity of low-frequency electromagnetic emissions at altitudes of the outer ionosphere based on satellite data at various levels of solar activity have been investigated. The intensity of low-frequency emissions has been found to depend on the solar activity, i.e., the spatial noise characteristics vary. Mean values of the noise amplitude variations at various phases of the solar activity cycle are presented. The low-frequency emissions are shown to serve as a source of information about the processes in the surface plasma; in particular, the state of the radiation belts is judged from them. The noise carries information about the variations in the particle fluxes intruding into the Earth’s plasmasphere under various solar activity conditions and about the magnetospheric plasma variations related to the growth of solar activity. In other words, the electromagnetic low-frequency noise can be a peculiar kind of indicator of the solar activity and the state of the magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号