首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
千烟洲中亚热带人工林生态系统CO2通量的季节变异特征   总被引:1,自引:2,他引:1  
作为中国陆地生态系统通量网络(ChinaFLUX)的组成部分,利用涡度相关技术对千烟洲中亚热带人工林生态系统CO2通量进行了长期观测.本研究集中探讨了千烟洲人工林2003年和2004年净生态系统CO2交换量(NEE)、生态系统呼吸(Re)和总生态系统CO2交换量(GEE)的季节变异特征及其源汇状况与强度.研究结果表明(i)NEE,Re和GEE具有明显的季节变化趋势且密切相关,冬季和干旱期量级较低而夏季量级较高.(ii)光照、温度和水分条件是控制千烟洲人工林生态系统NEE,Re和GEE季节动态的主导因素.光照是控制NEE的主要因素,而温度和水汽压差共同影响着NEE,但水汽压差对NEE的影响作用更强.在适宜光照条件下,干旱胁迫会造成千烟洲人工林生态系统碳吸收的适宜温度范围明显降低.温度和降水的协同作用共同控制着Re.(iii)2003年和2004年千烟洲人工林生态系统NEE,Re和GEE分别为-387.2和-423.8g C·m-2,1223.3和1442.0 g C·m-2,-1610.4和-1865.8 g C·m-2,这表明千烟洲人工林生态系统具有较强碳吸收能力.  相似文献   

2.
作为中国陆地生态系统通量网络(ChinaFLUX)的组成部分,利用涡度相关技术对千烟洲中亚热带人工林生态系统CO2通量进行了长期观测.本研究集中探讨了千烟洲人工林2003年和2004年净生态系统CO2交换量(NEE)、生态系统呼吸(Re)和总生态系统CO2交换量(GEE)的季节变异特征及其源汇状况与强度.研究结果表明:(i)NEE,Re和GEE具有明显的季节变化趋势且密切相关,冬季和干旱期量级较低而夏季量级较高.(ii)光照、温度和水分条件是控制千烟洲人工林生态系统NEE,Re和GEE季节动态的主导因素.光照是控制NEE的主要因素,而温度和水汽压差共同影响着NEE,但水汽压差对NEE的影响作用更强.在适宜光照条件下,干旱胁迫会造成千烟洲人工林生态系统碳吸收的适宜温度范围明显降低.温度和降水的协同作用共同控制着Re.(iii)2003年和2004年千烟洲人工林生态系统NEE,Re和GEE分别为-387.2和-423.8 g C·m-2,1223.3和1442.0 g C·m-2,-1610.4和-1865.8 g C·m-2,这表明千烟洲人工林生态系统具有较强碳吸收能力.  相似文献   

3.
千烟洲中亚热带人工林生态系统CO2通量的季节变异特征   总被引:1,自引:0,他引:1  
刘允芬 《中国科学D辑》2006,36(Z1):91-102
作为中国陆地生态系统通量网络(ChinaFLUX)的组成部分, 利用涡度相关技术对千烟洲中亚热带人工林生态系统CO2 通量进行了长期观测. 本研究集中探讨了千烟洲人工林2003年和2004年净生态系统CO2交换量(NEE)、生态系统呼吸(Re)和总生态系统CO2交换量(GEE)的季节变异特征及其源汇状况与强度. 研究结果表明: (ⅰ) NEE, Re和GEE具有明显的季节变化趋势且密切相关, 冬季和干旱期量级较低而夏季量级较高. (ⅱ) 光照、温度和水分条件是控制千烟洲人工林生态系统NEE, Re和GEE季节动态的主导因素. 光照是控制NEE的主要因素, 而温度和水汽压差共同影响着NEE, 但水汽压差对NEE的影响作用更强. 在适宜光照条件下, 干旱胁迫会造成千烟洲人工林生态系统碳吸收的适宜温度范围明显降低. 温度和降水的协同作用共同控制着Re. (ⅲ) 2003年和2004年千烟洲人工林生态系统NEE, Re和GEE分别为-387.2和-423.8 g C·m-2, 1223.3和1442.0 g C·m-2, -1610.4和-1865.8 g C·m-2, 这表明千烟洲人工林生态系统具有较强碳吸收能力.  相似文献   

4.
在全球气候变化条件下,全球陆地区域的降水量及其空间/时间分布模式将发生明显改变,这种变化将对中国的陆地生态系统,尤其是干旱地区的温带草地生态系统碳收支产生重要影响.作为中国陆地生态系统通量观测研究网络(ChinaFLUX)的一部分,本研究利用2003至2004年在内蒙古羊草草原的涡度相关通量观测数据,初步探讨了水分胁迫对羊草草原生态系统光合和呼吸作用的影响.研究发现温度和水分是影响该生态系统在生长季(5~9月)的光合和呼吸作用的主要因子.在土壤水分适宜条件下,生态系统呼吸对温度变化的敏感性较大(Q10=2.0),而当土壤含水量降低时生态系统呼吸对温度的敏感性明显降低(Q10=1.6).高温和干旱会显著降低生态系统的光合生产力.生长季的降水量及其季节分配模式的不同对草地生态系统的生物物候有明显的影响,在2003年6月初生态系统就开始净吸收CO2、在7月初出现最大净生态系统CO2吸收量,而因随后发生的干旱和高温胁迫使其在8月就提早进入休眠期;2004年春季的严重干旱导致生态系在7月初才开始净吸收CO2,并在降水丰沛气温适宜的8月出现最大CO2吸收量,水分胁迫导致该草地植物生长发育比2003年推迟1个多月.观测结果显示该草地生态系统在2004年5~9月比2003年同期多吸收30 g CO2·m-2.我国温带草原植被类型复杂多样,要准确估算我国草地生态系统碳收支还需要开展更多的长期联合观带研究.  相似文献   

5.
中国东部森林样带典型生态系统碳收支的季节变化   总被引:2,自引:1,他引:2  
利用涡度相关技术对中国东部森林样带(NSTEC)上的长白山温带针阔混交林(CBS)、千烟洲亚热带常绿人工针叶林(QYZ)、鼎湖山亚热带常绿针阔混交林(DHS)与西双版纳热带雨林季雨林(XSBN)等4种典型生态系统类型的碳收支特征开展了长期、连续的观测研究.本研究利用ChinaFLUX的连续观测资料,初步分析和评价了4种生态系统2003年碳收支的季节变化及其环境响应特征.在2003年,各生态系统的碳收支对环境因子的变化产生了不同的响应.CBS生态系统的碳收支主要受到了辐射与温度的控制,0℃和10℃是两个重要的临界温度,前者控制了生态系统碳交换的起止时间,后者影响了生态系统碳交换的强度.由于生态系统光合作用(GPP)出现峰值的时间早于呼吸(Re)作用,因此,CBS生态系统的净交换(NEE)在早夏达到最大值.由于夏季降水与温度的不同步性,QYZ生态系统的碳收支受到了干旱的制约,其降低主要来自于生态系统GpP的降低.DHS与XSBN生态系统均表现出在旱季碳吸收强、而雨季吸收弱的特征,特别是XSBN从旱季到雨季的转变过程中出现了由碳汇向碳源的转变.这主要是由于这两个生态系统在雨季的降水量较大,光合有效辐射不足,导致生态系统GPP受到抑制,而Re随温度升高而增大所致.XSBN的生态系统呼吸温度敏感性参数(Q10)与年呼吸总量最大,CBS与QYZ次之,DHS最小,但CBS生态系统每天的呼吸释放量最高.在2003年,CBS,QYZ,DHS和XSBN的NEE分别为181.5,360.9,536.2和-320.8 g·C·m-2·a-1.在CBS,QYZ和DHS三种生态系统之间,随着纬度的降低,温度与降水表现出明显的纬度梯度,生态系统Re占GPP比例逐渐降低,NEE与Re的比例随纬度的降低而逐渐增大.每天的光合吸收量、光能利用率和降水利用效率均表现出了随纬度降低而减少的趋势.但XSBN生态系统往往脱离这一纬度趋势.由于森林生态系统结构和功能具有的高度复杂性,需要更长时间的观测数据和开展更深入的分析,以科学解释不同生态系统对气候环境变化的响应和准确评价生态系统的碳收支能力.  相似文献   

6.
作为中国陆地生态系统通量观测网络(ChinaFLUX)的组成部分,利用涡度相关技术对千烟洲亚热带人工针叶林和长白山温带阔叶红松混交林生态系统CO2通量进行了长期观测.利用以温度和水分为驱动变量的连乘形式以及Q10形式的生态系统呼吸模型,分析了2003年中国亚热带和温带森林生态系统呼吸的季节变化及其环境响应特征.研究结果表明:(i)温度是控制生态系统呼吸特征的主导因素,温度和水分的协同作用共同控制着生态系统呼吸,利用这两个变量基本上可以描述生态系统呼吸的季节变异特征;对受到干旱胁迫的生态系统而言,水分条件也可能转化成为生态系统呼吸的主导因素.(ii)模型对比分析表明,在干燥的气候条件下,Q10模型对水分的响应能力比连乘模型更敏感,基于Q10模型可以准确描述生态系统呼吸的季节模式.(iii)基于Q10模型估算的千烟洲亚热带人工针叶林和长白山温带阔叶红松混交林生态系统呼吸年总量分别为1197和1268gC·m?2,而基于连乘模型估算的生态系统呼吸年总量分别为1209和1303gC·m?2.  相似文献   

7.
CEVSA模型是一个基于生理生态过程模拟植物-土壤-大气系统能量交换和水碳氮耦合循环及其对环境变化响应和适应的机理模型,在区域和全球尺度上得到广泛应用.尽管该模型在大尺度上已经应用大量的植被生产力,碳储量和叶面积测定以及遥感反演数据进行了验证,但还缺乏在冠层和景观尺度上对模型的机理过程(如对光合,呼吸和蒸散过程及其导致的水碳通量变化)模拟的检验.以近年来生态系统机理过程研究的最新进展为基础,对模型进行改进,应用一个亚热带针叶林水碳通量连续观测数据对模型模拟结果进行检验,并分析机理模拟与涡度相关观测得到的水碳通量与环境条件关系的差异.模型模拟的主要水碳通量季节变化特征均与观测值一致.对蒸散和土壤水分的模拟结果与观测值相近,分别解释了观测值90%和86%的变异性,但是模拟值系统偏低.模拟的年总光合碳固定(GPP)和生态系统呼吸(Re)接近于观测值,并且能够分别解释其观测值79%和88%的变异性.尽管净生态系统生产力(NEP)的模拟值(394 gC/m2)也与观测值(387.15 gC/m2)接近,但是它仅能解释观测值31%的变异性.与观测值相比,模拟的NEP在冬季偏低而在夏季偏高.通过与温度、水汽压差的相关分析表明,在严重的高温和缺水胁迫条件下,模型没有准确模拟生态系统光合和呼吸过程.结果证明CEVSA模型对水碳循环的模拟与植被冠层尺度水碳通量测定结果一致,但仍然需要对极端温度和水分胁迫效应的模拟作进一步的ChinaFLUX.  相似文献   

8.
复杂地形条件下森林植被湍流通量测定分析   总被引:10,自引:2,他引:10  
作为中国陆地生态系统通量观测网络(ChinaFLUX)的组成部分,利用涡度相关技术对千烟洲红壤丘陵区亚热带人工针叶林2倍和3倍冠层高度CO2等湍流通量进行了长期观测.采用谱分析、方差相似性关系和能量平衡闭合分析3种测试手段对2003年千烟洲人工林两个高度的湍流通量测定数据质量进行了分析.研究结果表明:(ⅰ)两个测定高度的三维风速,CO2,H2O和温度的功率谱在惯性子区内基本符合-2/3定律,而CO2,H2O和温度与垂直风速的协谱在惯性子区内也基本符合-4/3定律.谱分析表明大尺度运动对物质和能量传输的贡献随测定高度的增加而增加,也表明不同高度的涡度相关系统对高频信号的响应能力是满足观测要求的.(ⅱ)根据莫宁-奥布霍夫相似理论的分析表明,两个高度的垂直风速和温度归一化的方差都是大气稳定度的普适函数.夜间垂直风速的归一化方差与莫宁-奥布霍夫相似函数预测值的偏离和低估量是摩擦风速的函数.千烟洲人工林夜间湍流通量测定适宜的摩擦风速界限值应该为0.2~0.3ms?1,保证涡度相关测定处于较强湍流条件下,排除或降低非湍流通量成分的影响.(ⅲ)当摩擦风速大于界限值时,千烟洲人工林能量平衡闭合程度可以达到大约72%~81%左右,与文献报道的10%~30%不闭合度是相一致的.影响能量平衡的因素多,包括对通量测定有影响的  相似文献   

9.
千烟洲人工针叶林CO_2通量季节变化及其环境因子的影响   总被引:10,自引:8,他引:10  
对千烟洲人工针叶林碳通量与环境影响因子进行了分析,研究了23m和39m两层高度碳通量的时空变化特征,对2003年该生态系统的碳收支状况进行了初步估算.研究结果表明:影响净生态系统交换(NEE)的环境因子主要是光合有效辐射(PAR)、土壤温度等.白天(有光期)的NEE对于PAR的响应符合直角双曲线方程.通过摩擦速度的阈值对夜间数据进行了筛选,夜间(无光期)的NEE对于温度和饱和水汽压差的响应呈明显的指数关系.该生态系统全年各个月均表现为碳汇;碳通量各月的平均日变化和季节变化趋势明显.2003年各月NEE值以5,6月最高,日最大值为?0.61~?0.67mg·CO2·m?2·s?1;盛夏7月遭遇了严重伏旱及持续高温,NEE值约为5~6月的2/3,日最大值为?0.40mgCO2·m?2·s?1;秋末到冬季由于持续干旱,NEE为全年最低,日最大值为?0.29~?0.35mg·CO2·m?2·s?1.2003全年碳收支估算值在?0.553~?0.645kgC·m?2之间.  相似文献   

10.
老龄林碳代谢的长期测定对于预测其在未来气候条件下的碳收支状态,减小陆地生态系统碳收支的不确定性十分重要.本研究使用连续两个生长季节(2003和2004年)的涡度相关CO2净交换通量测定和常规气象资料分析平均林龄200年的长白山阔叶红松林生态系统(128°28'E,42°24'N,中国吉林省)FNEE及其主要成分FGPP与Re的季节和年际变化特征及环境和生物因子对其的影响.通量数据进行了平面坐标旋转,储存项和u*修正.叶面积指数和温度分别控制着该生态系统FGPP和Re的季节动态和年际差别.水汽压亏缺和气温在更小尺度上调节生长季节的生态系统光合生产,根部水分条件显著影响生态系统冬季维持性的碳代谢过程.2003年1月至2004年12月该生态系统累计截获碳-449 g C·m-2,其中2003和2004年分别为-278和-171 g C·m-2.这两年FGpP和Re分别为-1332,-1294 g C·m-2和1054,1124 g C·m-2.这显示老龄森林可以成为强的碳汇.受环境因子调控,长白山阔叶红松林生态系统的碳代谢表现出显著的季节和年际差异.冬季该生态系统存在弱的光合作用,但总体上向大气释放CO2.春秋季节碳代谢非常活跃,但生态系统吸收和释放几乎相同数量的碳,对全年碳截获贡献并不显著.夏季碳代谢对该生态系统全年碳收支意义重大.90 d的夏季分别贡献全年66.9,68.9%的FGpP和60.4,62.1%的Re.  相似文献   

11.
涡度相关技术经过长期的理论发展和技术进步,已经成为直接测定陆地生态系统与大气间的CO2和水热通量的重要方法.随着涡度相关通量观测在全球范围内的广泛开展,各区域、国家以及国际通量观测研究网络(FLUXNET)也应运而生.在过去10年里,通量观测研究在探讨全球陆地生态系统碳循环和水循环过程及环境控制机理、揭示陆地生态系统碳收支的时空格局、寻找"未知碳汇"等方面取得了显著的成果,也为资源、生态和环境等科学领域的国际交流创造了理想的合作研究平台.随着通量观测研究的不断深入,今后国际通量界将加强引进和开发新的观测技术,扩展通量观测的应用领域,尝试运用通量观测数据来协助研究有关生物地理学、生物地球化学、生态水文学、气象/气候学、遥感和全球碳循环模型等领域的科学问题.中国陆地生态系统通量观测研究网络(ChinaFLUX)是FLUXNET的重要组成部分,经过3年多的连续观测和研究已在涡度相关通量观测技术和方法、典型陆地生态系统碳水交换过程及其环境响应机理、生态系统碳水通量模型开发等方面取得了一系列重要进展.研究发现中国的主要森林生态系统在2003~2005年度都为大气CO2的汇,青藏高原上的高寒草甸生态系统也表现为较弱的碳汇,而封育的内蒙古半干旱羊草草原却表现为弱的碳源;在大的空间尺度上,温度和水分是决定陆地生态系统碳收支的关键环境因子.ChinaFLUX的发展思路拟以典型生态系统通量的联网观测与陆地样带研究相结合为技术途径,开展多尺度、多过程、多途径、多学科的综合集成观测,重点探讨生态系统的水、碳、氮循环过程机理及其耦合关系.  相似文献   

12.
基于MODIS晴空数据的森林日净第一性生产力估算   总被引:1,自引:0,他引:1  
基于光能利用率模型提出了一个基于MODIS数据参数反演的日净第一性生产力估算模型. 其中包括基于植被冠层叶面积指数和地表反照率的光合有效辐射比例能量平衡模型, 基于大气气溶胶光学厚度、水汽含量和Bird模型相结合的光合有效辐射计算模型. 日净第一性生产力模型所需的主要参数从MODIS数据反演获得. 为了验证净第一性生产力结果的估算精度, 用中国生态系统研究网络2003和2004年千烟洲和长白山观测站点的日净第一性生产力观测数据和模型估算结果对比, 结果表明两者具有较好的一致性. 同时也将同期NASA的净第一性生产力产品加以对比, 结果表明千烟洲站点上2004年的NASA产品低估了净第一性生产力值, 但长白山站则高估了净第一性生产力结果.  相似文献   

13.
内蒙古羊草草原碳交换季节变异及其生态学解析   总被引:1,自引:1,他引:1  
用涡度相关技术测量了内蒙古羊草草原2003和2004年两个生长季生态系统CO2交换通量.观测表明,两个生长季的CO2通量存在明显差异.内蒙古羊草草原生态系统CO2通量的日变化特征根据其吸收高峰出现的时间可以分为两种,一种具有两个吸收高峰,其特点是在午间出现了碳交换通量的降低,这种现象与植物光合作用的午间降低现象一致;另一种类型是只有一个吸收高峰出现在午间.CO2通量的吸收和排放的日最大值在两个生长季出现的时间有所不同,2003年均发生于7月,分别为-7.4 g·m-2·d-1(白天)和5.4 g·m-2·d-1(夜间),而2004年发生在8月,分别为-12.8 g·m-2·d-1(白天)和5.8 g·m-2·d-1(夜间).2003年128 d的植物生长期内,整个生态系统白天固定了294.66 g CO2·m-2,同时期夜间释放了333.14 g CO2·m-2;在2004年116 d的生长期内白天固定了467.46 g CO2·m-2,夜间释放了437.17 g CO2·m-2.根据两个生长季的观测数据分析表明,在影响生态系统碳交换的生态因子中,水分和光合有效辐射(PAR)是两个重要的生态因子.连续的降雨会引起生态系统碳交换能力的降低;在适宜的土壤水分条件下,决定白天CO2通量的主要是PAR,二者呈双曲线关系;土壤水分胁迫情况下,CO2通量显著低于适宜土壤湿度状况下的CO2通量,且当PAR>1200 μmol·m-2·s-1时,生态系统出现了光饱和现象;CO2通量明显地被高饱和水汽压差(VPD)所抑制;夜间CO2通量主要依赖于土壤温度与土壤水分有效性的协调作用.  相似文献   

14.
老龄林碳代谢的长期测定对于预测其在未来气候条件下的碳收支状态,减小陆地生态系统碳收支的不确定性十分重要.本研究使用连续两个生长季节(2003和2004年)的涡度相关CO2净交换通量测定和常规气象资料分析平均林龄200年的长白山阔叶红松林生态系统(128°28′E, 42°24′N,中国吉林省)FNEE及其主要成分FGPP与Re的季节和年际变化特征及环境和生物因子对其的影响.通量数据进行了平面坐标旋转,储存项和μ*修正.叶面积指数和温度分别控制着该生态系统FGPP和Re的季节动态和年际差别.水汽压亏缺和气温在更小尺度上调节生长季节的生态系统光合生产,根部水分条件显著影响生态系统冬季维持性的碳代谢过程.2003年1月至2004年12月该生态系统累计截获碳-449 g C·m-2,其中2003和2004年分别为-278和-171 g C·m-2.这两年FGPP和Re分别为-1332,-1294 g C·m-2和1054,1124 g C·m-2.这显示老龄森林可以成为强的碳汇.受环境因子调控,长白山阔叶红松林生态系统的碳代谢表现出显著的季节和年际差异.冬季该生态系统存在弱的光合作用,但总体上向大气释放CO2.春秋季节碳代谢非常活跃,但生态系统吸收和释放几乎相同数量的碳,对全年碳截获贡献并不显著.夏季碳代谢对该生态系统全年碳收支意义重大.90 d的夏季分别贡献全年66.9,68.9%的FGPP和60.4,62.1%的Re.  相似文献   

15.
中国科学院千烟洲红壤丘陵试验站地处亚热带季风气候区,其植被类型主要为人工针叶林.研究采用涡度相关技术观测结果计算了2003年和2004年的植被水分利用效率(WUE)季节变化.适逢2003年极端干旱,降雨量远远低于多年(1985~2002)平均水平,其中7月份降水量仅是多年平均值的2.8%,气温却高于平均水平3℃,而2004年的气象条件与多年平均水平接近,这为研究WUE的环境控制作用提供了天然的条件.经研究发现千烟洲试验站的降水多集中于春季,而夏季则存在明显的季节性干旱现象,从而导致了该区域特殊的植被WUE季节变化模式.WUE的季节变化与冠层蒸发散(Fw)和总初级生产力(GPP)的季节动态大致相反,在夏季达到最小值,而在冬季则达到最大值.在冬季GPP和Fw随气温和大气饱和水汽压差(VPD)的增加而增加,且GPP和Fw的增加速率比较接近;而在干旱的夏季,GPP和Fw却随气温和VPD的增加而降低,并且GPP随气温和VPD变化而降低的速率要远远大于Fw,这破坏了GPP和Fw的平衡关系,并进一步改变了WUE的保守性,最终导致夏季WUE的降低.夏季干旱期土壤水分的亏缺和高强度的辐射也都是造成该生态系统WUE降低的原因.在冬季该生态系统植被的光合和蒸腾作用主要受控于环境因素,而受植被本身气孔行为的控制作用相对较弱.在夏季植被的Fw主要受植被本身气孔行为的限制作用,而植被的GPP则受环境因素和植被本身气孔行为的双重限制.  相似文献   

16.
华北平原农田生态系统碳交换及其环境调控机制   总被引:7,自引:0,他引:7  
在华北平原冬小麦/夏玉米轮作田采用涡度相关法进行了连续两年的碳通量观测,研究农田生态系统碳通量的构成及其变化特征,并分析碳交换对主要环境因子的响应.结果显示夜间净碳交换量(NEE)与0~10 cm地温呈明显的指数关系,两年度(2002年11月~2003年10月和2003年11月~2004年10月)的Q10分别为2.94和2.40.通过模拟计算得到总初级生产力(GPP)和生态系统呼吸(Rec).冬小麦、夏玉米GPP的光响应曲线均符合直角双曲线方程.玉米季平均最大光合速率(Amax)与表观初始光能利用率(α)大于麦季.冬小麦α值随LAI增加而增大.作物主要生长季农田NEE的日变化明显白天吸收、夜晚释放CO2.其他月份农田以碳排放为主,NEE的日变化不显著.农田NEE日较差4~5月和8~9月较大,其它月份较小.农田NEE,GPP和Rec呈明显的季节变化.2003年和2004年玉米田最大日平均碳吸收量分别为-10.20和-12.50 gC·m-2·d-1;麦田最大日平均碳吸收量分别为-8.19和-9.50 gC·m-2·d-1.麦田和玉米田的最大碳吸收量分别出现在4~5月和8月中旬,和GPP最大值出现时间一致.冬小麦和夏玉米主要生长季(3~5月和8~9月)的NEE由GPP支配.GPP主要受PAR和LAI影响.温度对GPP的影响在早春较为明显.7月Rec达到全年最大,Rec和GPP对NEE的贡献相当.其余月份NEE以Rec为主,温度成为NEE的主要控制因子.从生长季NEE总量看,两年度的麦季分别为-77.6和-152.2 gC·m-2·a-1,玉米季分别为-120.1和-165.6 gC·m-2·a-1,玉米季均大于麦季.两年度冬小麦/夏玉米轮作田的年均NEE分别为-197.6和-317.9 gC·m-2·a-1,表明华北平原农田是大气CO2的汇.若考虑收获籽粒的碳,则农田由碳汇变为碳源两年度分别为340.5和107.5 gC·m-2·a-1.受温度、降水等气候因子及施肥、耕作等农田管理措施影响,农田碳交换的年际变化很大.实行免耕和一年一熟制是减少土壤碳排放、增加作物碳吸收的有效途径.  相似文献   

17.
利用涡度相关技术,对2003年和2004年青藏高原金露梅灌丛草甸生态系统CO2通量观测表明,金露梅灌丛草甸生态系统CO2通量日变化、年变化明显,且日变化暖季大于冷季.CO2净交换量在年内的4,9月为两个释放高峰期,以7和8月的吸收量最大.2年的CO2吸收分别为231.4和274.8 gCO2·m-2,平均为253.1 gCO2·m2,在区域起着重要的碳汇功能.CO2日交换量与温度、辐射等气象因素具有显著的负相关关系.受年际间气候差异影响,两年CO2释放和吸收高峰出现及维持时间具有微小的差异.比较发现,各年白天CO2通量受光合辐射的控制作用基本相同,温度条件似乎成为影响CO2通量的重要环境因子.在植物生长季温度过高明显时,会降低碳的吸收能力.其原因可能是由于高温度条件下土壤呼吸增强有关引起的.生物量测定表明,2003和2004年的地上和地下生物年净固碳量分别为544.0和559.4 gC·m-2,与CO2年净交换吸收碳量(分别为63.1和74.9 gC·m-2)基本趋势一致.  相似文献   

18.
亚洲区域陆地生态系统碳通量观测研究进展   总被引:22,自引:8,他引:22  
作为FLUXNET的重要组成部分,亚洲区域以其广阔的地域、独特的气候、丰富多样的植被类型等特点,日益成为全球碳通量观测研究的热点地区之一.目前在亚洲地区已经成立了AsiaFlux(日本),KoFlux(韩国)和ChinaFLUX(中国)区域性观测研究网络,约有54个不同生态系统类型的通量观测站点,观测区域覆盖了从2°N到63°N的热带雨林、常绿阔叶林、针阔混交林、灌木草地、高寒草甸和各种农田等陆地生态系统.各观测站点都在以涡度相关技术为主体对植被-大气间的CO2,H2O和能量通量、以及生态系统水碳循环的关键过程进行着长期和连续的观测,所获取的观测数据将被用于量化和对比分析研究区域内的生态系统碳收支与水平衡特征及其对环境变化的响应,验证土壤-植物-大气连续系统的物质交换模型,服务于陆地生态系统碳、水循环的集成性研究.长期以来,亚洲地区的科学家在观测理论与技术、生态系统通量特征和模拟模型等领域取得了许多成就,为全球通量观测事业的发展做出了重要贡献.但是,为进一步提高亚洲地区的通量观测研究水平、加速观测数据的积累、提高数据质量和数据资源的共享水平,急需建立复杂地形和夜间NEE质量评价与校正的方法论体系,构建和发展通量观测网络与稳定性同位素观测网络、水碳循环过程实验网络以及遥感观测或高空  相似文献   

19.
了解生态系统CO2净交换(NEE)的季节变化规律和主要生物因子及环境因子对这些过程的影响将有助于生态系统碳循环过程机理的理解以及大尺度过程的模拟.本研究利用涡度相关技术对位于西藏高原腹地的、世界海拔最高的草地碳通量观测站的NEE及生物和环境因子进行近3年观测,阐明NEE及其组分的动态变化特征和影响因子.草原化嵩草草甸生态系统碳吸收的最大值出现在8月,最大碳排放出现在11月,在生长季初的6月,受降水和植物返青快慢的影响,会出现生态系统碳吸收或排放的年际差异,7~9月表现为碳吸收,其余月份均为碳排放.在生长季,白天的NEE主要受光合有效辐射变化的控制,同时又与叶面积指数交互作用,共同调节光合速率和光合效率的强度.生态系统呼吸主要受温度的控制,同时也受到土壤含水量的显著影响,呼吸商(Q10)与温度呈负相关,而与土壤含水量呈正相关关系.生长季昼夜温差大并不利于生态系统的碳获取.10℃时标准呼吸速率(R10)与土壤水分、温度、叶面积指数和地上生物量呈正相关关系.降水格局影响了土壤水分动态,土壤含水量会显著影响生态系统呼吸的季节变化.生长季初和末期的脉冲性降水会导致生态系统呼吸的迅速上升,从而导致生态系统碳的流失.西藏高原草原化嵩草草甸生长季短,温度低,致使生态系统的叶面积指数偏低,生态系统碳吸收较少,降水格局引起的土壤湿度动态和脉冲性降水将对生态系统呼吸产生了重要影响,从而会影响到生态系统的碳收支水平.  相似文献   

20.
不同出露时间下洞庭湖洲滩土壤及生态系统呼吸特征   总被引:1,自引:0,他引:1  
周延  靖磊  杨萌  史林鹭  吕偲  雷光春 《湖泊科学》2018,30(6):1664-1671
于2015年1月洞庭湖枯水期,针对不同出露时间下的洲滩,调查其土壤理化性质,并利用LI-8100便携式二氧化碳气体分析仪监测其生态系统呼吸.结果表明:在洞庭湖枯水期,洲滩出露后,洲滩土壤有机质、硝态氮、铵态氮和全氮含量随出露时间增长而先升高后降低.土壤溶解性有机碳含量是影响洞庭湖枯水期洲滩生态系统呼吸强度的最重要影响因子.溶解性有机碳含量随出露时间增长而提高,洲滩生态系统呼吸强度随之提高,并在洲滩出露约60天后达到最高值.出露洲滩生态系统呼吸通量均值为0.72±0.55 μmol/(m2·s),超过杨树林地、芦苇地和农田地,成为洞庭湖区冬季CO2排放最活跃的区域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号