首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new period of seismic activity that culminated in a small phreatic explosion took place in Colima Volcano (Western Mexico) during the month of July 1994. In this note, we present our analysis of this seismicity based upon information from RESCO, the seismic network of the University of Colima. The activity began with a seismic swarm of type A (tectonic-like) earthquakes with epicenters towards the SSW of the summit, followed by shallow low-frequency events underneath the volcanic edifice. The activity was accompanied by landslides and culminated with an explosion that produced small ash falls on the surrounding area. The seismic activity ceased after this episode.  相似文献   

2.
The Colima Volcanic Complex at the western end of the Mexican Volcanic Belt is the most active andesitic volcano in Mexico. Short-wavelength infrared data from the Landsat Thematic Mapper satellite were used to determine the temperature and fractional area of radiant picture elements for two January data acquisitions in 1985 and 1986. The 1986 data showed four 28.5 m by 28.5 m pixels (picture elements) whose hot subpixel components had temperatures ranging from 511–774° C and areas of 1.8–13 m2. The 1985 data had no radiating areas above background temperatures. Ground observations and measurements in November 1985 and February 1986 reported the presence of hot fumaroles at the summit with temperatures of 135–895° C. This study demonstrates the utility of satellite data for monitoring volcanic activity.  相似文献   

3.
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January–February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater.  相似文献   

4.
Ten years after the last effusive eruption and at least 15 years of seismic quiescence, volcanic seismic activity started at Colima volcano on 14 February 1991, with a seismic crisis which reached counts of more than 100 per day and showed a diversity of earthquake types. Four other distinct seismic crises followed, before a mild effusive eruption in April 1991. The second crisis preceded the extrusion of an andesitic scoriaceous lava lobe, first reported on 1 March; during this crisis an interesting temporary concentration of seismic foci below the crater was observed shortly before the extrusion was detected. The third crisis was constituted by shallow seismicity, featuring possible mild degassing explosion-induced activity in the form of hiccups (episodes of simple wavelets that repeat with diminishing amplitude), and accompanied by increased fumarolic activity. The growth of the new lava dome was accompanied by changing seismicity. On 16 April during the fifth crisis which consisted of some relatively large, shallow, volcanic earthquakes and numerous avalanches of older dome material, part of the newly extruded dome, which had grown towards the edge of the old dome, collapsed, producing the largest avalanches and ash flows. Afterwards, block lava began to flow slowly along the SW flank of the volcano, generating frequent small incandescent avalanches. The seismicity associated with the stages of this eruptive activity shows some interesting features: most earthquake foci were located north of the summit, some of them relatively deep (7–11 km below the summit level), underneath the saddle between the Colima and the older Nevado volcanoes. An apparently seismic quiet region appears between 4 and 7 km below the summit level. In June, harmonic tremors were detected for the first time, but no changes in the eruptive activity could be correlated with them. After June, the seismicity decreasing trend was established, and the effusive activity stopped on September 1991.  相似文献   

5.
 For first time, during 1991, seismic activity was recorded during an eruption at Colima volcano. We analyze these data to obtain a stress pattern using a composite focal mechanism technique. From the analysis of regional seismicity, the Tamazula Fault and the Armeria River appear as active features and the dip of the slab east of the Jalisco Block is approximately 12°. Southwest of Colima volcano a vertical alignment of seismic events was observed. We estimate five different composite focal mechanism solutions from our data set, which indicate a change of the stress field at the volcano after the 1991 eruption. These solutions suggest that the stress field in the volcanic edifice was controlled by stresses related to the emplacement of magma superimposed on the regional stress field. No evidence of active local faults in the volcanic edifice was found. We propose a model for the eruptive process that involves tilting of the volcanic edifice. Received: 15 October 1995 / Accepted: 26 October 1998  相似文献   

6.
The 18–24 January 1913 eruption of Colima Volcano consisted of three eruptive phases that produced a complex sequence of tephra fall, pyroclastic surges and pyroclastic flows, with a total volume of 1.1 km3 (0.31 km3 DRE). Among these events, the pyroclastic flows are most interesting because their generation mechanisms changed with time. They started with gravitanional dome collapse (block-and-ash flow deposits, Merapi-type), changed to dome collapse triggered by a Vulcanian explosion (block-and-ash flow deposits, Soufrière-type), then ended with the partial collapse of a Plinian column (ash-flow deposits rich in pumice or scoria,). The best exposures of these deposits occur in the southern gullies of the volcano where Heim Coefficients (H/L) were obtained for the various types of flows. Average H/L values of these deposits varied from 0.40 for the Merapi-type (similar to the block-and-ash flow deposits produced during the 1991 and 1994 eruptions), 0.26 for the Soufrière-type events, and 0.17–0.26 for the column collapse ash flows. Additionally, the information of 1991, 1994 and 1998–1999 pyroclastic flow events was used to delimit hazard zones. In order to reconstruct the paths, velocities, and extents of the 20th Century pyroclastic flows, a series of computer simulations were conducted using the program FLOW3D with appropriate Heim coefficients and apparent viscosities. The model results provide a basis for estimating the areas and levels of hazard that could be associated with the next probable worst-case scenario eruption of the volcano. Three areas were traced according to the degree of hazard and pyroclastic flow type recurrence through time. Zone 1 has the largest probability to be reached by short runout (<5 km) Merapi and Soufrière pyroclastic flows, that have occurred every 3 years during the last decade. Zone 2 might be affected by Soufriere-type pyroclastic flows (∼9 km long) similar to those produced during phase II of the 1913 eruption. Zone 3 will only be affected by pyroclastic flows (∼15 km long) formed by the collapse of a Plinian eruptive column, like that of the 1913 climactic eruption. Today, an eruption of the same magnitude as that of 1913 would affect about 15,000 inhabitants of small villages, ranches and towns located within 15 km south of the volcano. Such towns include Yerbabuena, and Becerrera in the State of Colima, and Tonila, San Marcos, Cofradia, and Juan Barragán in the State of Jalisco.  相似文献   

7.
Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals 10,000 years of explosive eruptions. Highlights include:(1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier.(2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at 3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred 1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter.(3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and 900 A.D. (roughly, 1400–1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by “caretakers” for several centuries longer.(4) A partial collapse of New Merapi occurred <1130±50 14C y B.P. Eruptions 700–800 14C y B.P. (12–14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended “caretaker” occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12–14th centuries, probably impounded by deposits from Merapi.(5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much larger than any of this century have occurred many times during Merapi's history, most recently during the 19th century.Are the relatively small eruptions of the 20th century a new style of open-vent, less hazardous activity that will persist for the foreseeable future? Or, alternatively, are they merely low-level “background” activity that could be interrupted upon relatively short notice by much larger explosive eruptions? The geologic record suggests the latter, which would place several hundred thousand people at risk. We know of no reliable method to forecast when an explosive eruption will interrupt the present interval of low-level activity. This conclusion has important implications for hazard evaluation.  相似文献   

8.
The transition between the terminal cones and the ancestral edifices of Nevado de Colima and Fuego de Colima volcanoes is marked by the deposits of gigantic volcanic debris avalanches of the Mount St. Helens (MSH) or Bezymianny type. Unusual mafic juvenile fragments and cauliflower bombs as well as juvenile fragments of mixed and more evolved composition are abundant in dune-bedded pyroclastic-surge deposits directly associated with these catastrophic events at both volcanoes. At Nevado, these mafic juvenile fragments represent the most primitive magma ever erupted by the volcano (SiO252.50%). The lavas directly preceding and following the debris-avalanche event are silicic andesites (SiO259%). At Fuego these juvenile fregments have 56% SiO2. The lavas from the upper parts of the caldera wall are dacites (65% SiO2), whereas the terminal cone is composed of andesites (57% to 62% SiO2). At Nevado, petrologic evidence for interaction of mafic magma with andesitic or dacitic magma in a high-level magma chamber, just before the eruption of pyroclastic surge deposits, consists of: (1) banded juvenile bombs of intermediate composition; (2) the range of composition of these bombs from SiO252% to 58%; (3) the presence of highly magnesian olivine with reaction rims; (4) inverse zoning in clinopyroxene with strong Mg enrichment towards the rim; (5) resorption of plagioclase; and (6) significant compositional heterogeneity in the vitric phase. Volcanic debris-avalanche events at Nevado and Fuego de Colima may thus correspond with major breaks in the petrological evolution of the volcanoes and the start of a new magmatic cycle. Injection of mafic magma into the presently perched viscous surface dome of the active Fuego cone, as occurred in 1818 and 1913, could enhance the likelihood of southward collapse of the flank of an already unstable edifice, and it must be considered in future hazard assessment of this active volcano. Risk to life and property for the entire Colima region associated with such catastrophic phenomena would be immeasurably greater in comparison with hazards related to the last explosive outburst in 1913, which resulted in emplacement of pyroclastic flows over uninhabited areas of the upper flanks of the volcano.  相似文献   

9.
 Additional data from proximal areas enable a reconstruction of the stratigraphy and the eruptive chronology of phases III and IV of the 1982 eruption of El Chichón Volcano. Phase III began on 4 April at 0135 GMT with a powerful hydromagmatic explosion that generated radially fast-moving (∼100 ms–1) pyroclastic clouds that produced a surge deposit (S1). Due to the sudden reduction in the confining pressure the process continued by tapping of magma from a deeper source, causing a new explosion. The ejected juvenile material mixed with large amounts of fragmented dome and wall rock, which were dispersed laterally in several pulses as lithic-rich block-and-ash flow (F1). Partial evacuation of juvenile material from the magmatic system prompted the entrance of external water to generate a series of hydromagmatic explosions that dispersed moisture-rich surge clouds and small-volume block-and-ash flows (IU) up to distances of 3 km from the crater. The eruption continued by further decompression of the magmatic system, with the ensuing emission of smaller amounts of gas-rich magma which, with the strong erosion of the volcanic conduit, formed a lithic-rich Plinian column that deposited fallout layer B. Associated with the widening of the vent, an increase in the effective density of the uprising column took place, causing its collapse. Block-and-ash flows arising from the column collapse traveled along valleys as a dense laminar flow (F2). In some places, flow regime changes due to topographic obstacles promoted transformation into a turbulent surge (S2) which attained minimum velocities of approximately 77 ms–1 near the volcano. The process continued with the formation of a new column on 4 April at 1135 GMT (phase IV) that emplaced fall deposit C and was followed by hydromagmatic explosions which produced pyroclastic surges (S3). Received: 13 May 1996 / Accepted: 12 November 1996  相似文献   

10.
Holocene explosive activity of Hudson Volcano, southern Andes   总被引:3,自引:1,他引:2  
 Fallout deposits in the vicinity of the southern Andean Hudson Volcano record at least 12 explosive Holocene eruptions, including that of August 1991 which produced ≥4 km3 of pyroclastic material. Medial isopachs of compacted fallout deposits for two of the prehistoric Hudson eruptions, dated at approximately 3600 and 6700 BP, enclose areas at least twice that of equivalent isopachs for both the 1991 Hudson and the 1932 Quizapu eruptions, the two largest in the Andes this century. However, lack of information for either the proximal or distal tephra deposits from these two prehistoric eruptions of Hudson precludes accurate volume estimates. Andesitic pyroclastic material produced by the 6700-BP event, including a  1 10-cm-thick layer of compacted tephra that constitutes a secondary thickness maximum over 900 km to the south in Tierra del Fuego, was dispersed in a more southerly direction than that of the 1991 Hudson eruption. The products of the 6700-BP event consist of a large proportion of fine pumiceous ash and accretionary lapilli, indicating a violent phreatomagmatic eruption. This eruption, which is considered to be the largest for Hudson and possibly for any volcano in the southern Andes during the Holocene, may have created Hudson's 10-km-diameter summit caldera, but the age of the caldera has not been dated independently. Received: 31 January 1997 / Accepted: 29 October 1997  相似文献   

11.
Fine ash content of explosive eruptions   总被引:1,自引:0,他引:1  
In explosive eruptions, the mass proportion of ash that is aerodynamically fine enough to cause problems with jet aircraft or human lungs (< 30 to 60 μm in diameter) is in the range of a few percent to more than 50%. The proportions are higher for silicic explosive eruptions, probably because vesicle size in the pre-eruptive magma is smaller than those in mafic magmas. There is good evidence that pyroclastic flows produce high proportions of fine ash by communition and it is likely that this process also occurs inside volcanic conduits and would be most efficient when the magma fragmentation surface is well below the summit crater. Reconstructed total grain size distributions for several recent explosive eruptions indicate that basaltic eruptions have small proportions of very fine ash (~ 1 to 4%) while tephra generated during silicic eruptions contains large proportions (30 to > 50%).  相似文献   

12.
13.
 Lascar Volcano (5592 m; 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor. Received: 12 December 1996 / Accepted: 6 May 1997  相似文献   

14.
Volcán de Colima is currently the most active volcano in Mexico. Since 1998 intermittent activity has been observed with vulcanian eruptions, lava flows and growing domes that have collapsed producing several block-and-ash flow deposits. During the period of heightened activity since 1998 at Volcán de Colima, pyroclastic flows from dome or column collapse have not reached long distances, most of the time less than 6 km from the crater. In contrast, rain-induced lahars were more frequent and have reached relatively long distances, up to 15 km, causing damage to infrastructure and affecting small villages. In 2007 two rain gauge stations were installed on the southern flank of the volcano registering events from June through to October, the period when rains are intense and lahars frequent. By comparing lahar frequency with rainfall intensity and the rainfall accumulated during the previous 3 days, lahars more frequently occur at the beginning of the rainfall season, with low rain accumulation (< 10 mm) and triggered by low rain intensities (< 20 mm/h). During the months with more rainfall (July and August) lahars are less frequent and higher peak intensities (up to 70 mm/h) are needed to trigger an event. In both cases, lahars were initiated as dilute, sediment-laden streamflows, which transformed with entrainment of additional sediment into hyperconcentrated and debris flows, with alternations between these two flow types. A hydro-repellency mechanism in highly vegetated areas (i.e. evergreen tree types with considerable amount of resins and waxes such as pines) with sandy soils can probably explain the high frequency of lahars at the beginning of the rain season during low rainfall events. Under hydrophobic conditions, infiltration is inhibited and runoff is facilitated at more highly peaked discharges that are more likely to initiate lahars.  相似文献   

15.
In this paper, we document the evolution of the emergent Panarea dome in the Aeolian islands (Southern Italy), placing particular emphasis on the reconstruction of the explosive events that occurred during the final stage of its evolution. Two main pyroclastic successions exposing fall deposits with different compositions have been studied into detail: the andesitic Palisi succession and the basaltic Punta Falcone succession. The close-in-time deposition of the two successions, the dispersal area and grain-size distribution of the deposits account for their attribution to vents located in the western sector of the present island and erupting almost contemporaneously. Vents could have been aligned along NNE-trending regional fracture systems controlling the western flank of the dome and possibly its collapse. Laboratory analyses have been devoted to the characterization of the products of the two successions that have been ascribed to vulcanian- and to strombolian-type eruptions respectively. The vulcanian eruption started with a vent-clearing phase that occurred by sudden decompression of a pressurized magma producing ballistic bombs and a surge blast and the development of a vulcanian plume. Vulcanian activity was almost contemporaneous to strombolian-type fall-out eruptions. The coeval occurrence of basaltic and andesitic eruptions from close vents and the presence of magmatic basaltic enclaves in the final dacitic lava lobe of the dome allow us to speculate that the intrusion of a basaltic dyke played a major role in triggering explosive eruptions. The final explosive episodes may have been caused by extensional tectonics fracturing the roof of a zoned shallow magma chamber or by the intrusion of a new basaltic magma into a more acidic and shallow reservoir. Intrusion most likely occurred through the injection of dykes along the western cliff of the present Panarea Island inducing the collapse of the western sector of the dome.  相似文献   

16.
We examine the basic characteristics of inflations at Semeru Volcano, Indonesia, to clarify the pressurization process prior to two different styles of explosive eruptions: Vulcanian eruptions and gas bursts. Analysis of data obtained from tilt meters installed close to the active crater allows clarification of the common features and the differences between the two styles of eruptions. To improve the signal-to-noise ratio and to determine the mean characteristics of the inflations, we stack tilt signals obtained from eruptions of different magnitudes and evaluate the maximum amplitude of the seismic signal associated with these eruptions. Vulcanian eruptions, which explosively release large amounts of ash, are preceded by accelerating inflation about 200–300 s before the eruption, which suggests volume expansion of the gas phase. In contrast, gas bursts, which rapidly effuse water steam accompanied by explosive sounds, follow non-accelerating changes of inflation starting 20 s before each emission. Tilt amplitudes increase with the magnitude of eruptions for both eruption styles. This suggests that the volume and/or pressure of magma or gas stored in the conduit before eruptions controls the magnitude of volcanic eruptions. These results further suggest that the magnitude of eruptions can be predicted from geodetic measurements of volcano inflation.  相似文献   

17.
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows.  相似文献   

18.
About 4,300 years ago, 10 km3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40–75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude.Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.  相似文献   

19.
It is commonly assumed that the greater explosivity of andesitic volcanoes is due to higher gas contents, but there is no evidence that they are more gas-rich than basaltic volcanoes of oceanic regions. Their higher explosivity results from greater pressures in upper levels of the eruptive vents. The high viscosity of andesitic magmas retards the expansion of gases exsolving from rising magma and results in higher pressures when the magma approaches the surface. Two basic types of explosive mechanisms can be distinguished. One, which is analogous to a fire hose, carries fragments in a high-velocity, low-pressure gas stream. The ejection velocity of individual fragments is the resultant of the gas-stream velocity and the settling velocity of the fragment of given size in a fluid of appropriate density. The size of ejecta diminishes in a regular fashion outward from the vent. In the second type, which is more like a cannon, blocks are suddenly accelerated by high-pressure gas that is contained in cavities and fractures within a slowly rising magma and tend to have a distribution pattern in which large blocks have been projected farther than small ones. There is no theoretical basis for pressures of more than a few hundred bars if gas is exsolved from a rising magma. Higher pressures can be attained by heating meteoric water under conditions that permit little volumetric expansion.  相似文献   

20.
The propagation of the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) has significantly altered the plate configuration at the north end of the Middle America Trench. This ridge propagation, the collision of the EPR-PCS with the Middle America Trench, the separation of the Rivera and Cocos plates and the formation of the Rivera Transform have produced a complex arrangement of morphotectonic elements in the area of Rivera-Cocos plate boundary, atypical of an oceanic transform boundary. Existing marine magnetic and bathymetric data has proved inadequate to unravel this complexity, thus, a dense grid of total field magnetic data were collected during campaigns MARTIC-04 and MARTIC-05 of the B/O EL PUMA in 2004 and 2006. These data have greatly clarified the magnetic lineation pattern adjacent to the Middle America trench, and have revealed an interesting en echelon, NE-SW oriented magnetic high offshore of the Manzanillo Graben. We interpret these new data to indicate that the EPR-PCS ridge segment reached the latitude (~18.3°N) of the present day Rivera Transform at about Chron 2A3 (~3.5Ma) and propagated further northward, intersecting the Middle America Trench at about 1.7 Ma (Chron 2). At 1.5 Ma spreading ceased along the EPR north of 18.3°N and the EPR-PCS has since retreated southward in association with a southward propagation of the Moctezuma Spreading Segment. North of 18.3°N the seafloor near the trench has been broken into small, uplifted blocks, perhaps due to the subduction of the young lithosphere generated by the EPR-PCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号