首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On 14 July 1974 the Atmosphere Explorer-C satellite flew through an aurora at F-region altitudes just after local midnight. The effects of the particle influx are clearly evident in the ion densities, the 6300 Å airglow, and the electron and ion temperatures. This event provided an opportunity to study the agreement between the observed ion densities and those calculated from photochemical theory using in situ measurements of such atmospheric parameters as the neutral densities and the differential electron energy spectra obtained along the satellite track. Good agreement is obtained for the ions O2+, NO+ and N2+ using photochemical theory and measured rate constants and electron impact cross sections. Atomic nitrogen densities are calculated from the observed [NO+]/[O2+] ratio. In the region of most intense electron fluxes (20 erg cm−2 sec−1) at 280 km, the N density is found to be between 2 and 7 × 107 cm−3. The resulting N densities are found to account for approx. 60% of the production of N+ through electron impact on N and the resonant charge exchange of O+(2P) with N(4S). This reaction also provides a significant source of O(1S) in the aurora at F-region altitudes. In the region of intense fast electron influx, the reaction with atomic nitrogen is found to be the main loss of O+(2P).  相似文献   

2.
Rocket results are presented on the OI 6300 Å line and on the N2+ 3914 Å band in the dayglow. An altitude range of 78–335 km is covered. Theoretical interpretations are given, using results of simultaneous measurements of electron density and electron temperature. The apparent brightness of the 6300 Å line at the base of the emitting region is found to be 13 kR, of which 5.5 kR are ascribed to excitation through the Schumann-Runge dissociation of O2 by the solar UV radiations, 0.55 kR to the dissociative recombination of O2+ and NO+ ions, and 0.03 kR to the excitation of O by thermal electrons. An additional source of excitation above 280 km is suggested. The deactivation of O(1D) by O2(X3Σg) is found to be appreciable below 200 km, and its rate coefficient is estimated to be 2 × 10−10 cm3/sec. The apparent brightness of the 3914 Å band at the base of the emitting region is found to be 6.5 kR, decreasing to 3.2 kR at 330 km. Assuming that fluorescent scattering of solar radiation is the mechanism involved the distribution of N2+ ions is calculated. The rate coefficients for the loss of these ions are hence calculated.  相似文献   

3.
We have constructed a one-dimensional model of the nightside ionosphere of Venus in which it is assumed that the ionization is maintained by day-to-night transport of atomic ions. Downward fluxes of O+, C+ and N+ in the ratios measured on the dayside at high altitudes are imposed at the upper boundary of the model (about 235 km). We discuss the resulting sources and sinks of the molecular ions NO+,CO+,N2+,CO2+ and O2+. As the O+ flux is increased, the peak density of O+ increases proportionally and the altitude of the peak decreases. The O2+ peak density is approximately proportional to the square root of the O+ flux and the peak rises as the O+ flux increases. NO+ densities near the peak are relatively unaffected by changes in the O+ flux. If the ionosphere is maintained mostly by transport, the ratio of the peak densities of O+ and O2+ indicates the downward flux ofO+, independent of the absolute magnitudes of the densities. The densities of mass-28 ions are, however, still considered to be the most sensitive indicator of the importance of electron precipitation. We examine here the inbound and outbound portions of six early nightside orbits with low periapsis and use data from the Pioneer Venus orbiter ion mass spectrometer, the retarding potential analyzer and the electron temperature probe to determine the relative importance of ion transport and electron precipitation. For most of the orbits, precipitation is inferred to be of low to moderate importance. Only for orbit 65, which was the first nightside orbit published by Taylor et al. [J. geophys. Res. 85, 7765 (1980)] and for the inbound portion of orbit 73 does the ionization structure appear to be greatly affected by electron precipitation.  相似文献   

4.
About a year's observations of the N2+ band (3914 Å) at Kitt Peak (latitude 32°) are reported. Morning intensities are the same throughout the year, but there is a strong winter maximum in the evening. It is suggested that the additional ionization is produced by photoelectrons from the magnetic conjugate point. Heights are estimated by the zenith-horizon method, which gives 235 km for the constant component and 350 km during the evening enhancement. The intensity variation through twilight is therefore entirely due to changes of the N2+ concentration; each ion scatters light at a constant rate. The rotational distribution resembles that for a temperature of 1600°K, much higher than the temperature of the atmosphere. It is suggested that part of the ions may be produced by charge transfer from metastable O+(2D). N2+ concentrations resulting from photoionization are calculated; they give a fair account of the observed horizon intensities, but not the zenith. Non-local electrons from higher in the atmosphere are suggested as a possible extra source; alternatively, the zenith measurements may be perturbed by scattered horizon light. The band intensity in the nightglow cannot be measured; the upper limit is 1 R.  相似文献   

5.
The absorption of solar ionizing radiation during twilight is investigated. Ion production rates are obtained as a function of altitude and twilight intensities and altitude profiles of emissions arising from the fluorescence of solar ionizing radiation are calculated for various solar depression angles. For an atmosphere with an exospheric temperature of 750°K, the predicted overhead intensity from fluorescence of the O+(2P2D) lines at 7319–7330 diminishes from 175 R at dusk to 10 R at a solar depression angle of 10°. The predicted overhead intensities from fluorescence of the N2+ Meinel and first negative systems are respectively about 175 R and 20 R at dusk diminishing to respectively 1.5 R and 0.1 R at a solar depression angle of 10°.

It is suggested that a charge transfer reaction of O+2D in N2 is a significant source of N2+ ions. This reaction offers a possible explanation for the high apparent rotational temperatures in the first negative system observed by Broadfoot and Hunten. Other excitation and ionization mechanisms are briefly discussed.  相似文献   


6.
Recent improvements in rocket-borne mass spectrometer technology have made it possible to measure lower ionospheric ions with greater sensitivity and to extend the measurements to lower heights. The improvements made to the instrument and positive ion results from a flight of this instrument will be reported here. In addition to the previously known ions, such as NO+(H2O)n and H+(H2O)n, new ion species were found. The total fractional count rate of these ions was found to be constant with height indicating an upper altitude source. Possible identifications of these ions are proposed along with possible production mechanisms.  相似文献   

7.
A general analysis of ionospheric conditions has been made in the light of possible ionic reactions occurring in the upper atmosphere. Data obtained on various parameters, such as ionic production and recombination, show that precise knowledge of the spectral distribution of solar radiation is needed and that other experimental determinations on dissociative recombinations are required.

The ionic complexity of the ionosphere is underlined by describing how the atomic ions O+ and N+ react with N2, O2 and NO molecules. The behavior of the molecular ions N+2, O+2and NO+depends on a group of simultaneous processes involving charge transfers and ionatom interchanges which are more important than dissociative recombinations. The altitude distribution of ions is exemplified by discussing the relative importance of various loss coefficients in the D-, E- and F-regions. It is seen that molecular nitrogen ions are subject to important charge transfer processes, that nitric oxide ions are always final products destroyed only by dissociative recombination. Additionally, the entire production of atomic oxygen ions is related to the photoionization of molecular nitrogen. Some information is also given on possible anomalies in the ratio of O+2 and NO+ densities in the lower ionosphere. From the lack of sufficient experimental information on ionic processes it is shown that a precise analysis of ionospheric behavior remains highly speculative.  相似文献   


8.
Accurate observations of the elevation angle of arrival of 20 MHz signals from the polar orbiting satellite Beacon-B for a 20 month period have provided transmission ionograms which may be reduced to give Hp, the scale height at the peak of the ionosphere. Noon seasonal averages of Hp are 1.35 (in winter) to 1.55 (in summer) times greater than the scale height obtained from bottom-side ionograms. A comparison of scale height at the peak with routine measurements of total content and peak electron density indicates that the O+/H+ transition level is above 1000 km during the day but comes down to about 630 km on winter nights. A predawn peak in the overall scale height (∝ total content/peak density) is caused by a lowering of the layer to a region of increased recombination and is magnified in winter by low O+/H+ transition levels. After sunrise in winter and equinoxes the overall scale height is less than the scale height at the peak, implying an outwards flux of ionisation which lasts for about three hours. The summer evening increase in ƒ0F2 requires both a cooling and a raising of the layer for its occurrence.  相似文献   

9.
The neutral gas temperature and circulation of the thermosphere are calculated for December solstice conditions near solar cycle maximum using NCAR's thermospheric general circulation model (TGCM). High-latitude heat and momentum sources significantly alter the basic solar-driven circulation during solstice. At F-region heights, the increased ion density in the summer hemisphere results in a larger ion drag momentum source for the neutral gas than in the winter hemisphere. As a result there are larger wind velocities and a greater tendency for the neutral gas to follow the magnetospheric convection pattern in the summer hemisphere than in the winter hemisphere. There is about three times more Joule heating in the summer than the winter hemisphere for moderate levels of geomagnetic activity due to the greater electrical conductivity in the summer E-region ionosphere.

The results of several TGCM runs are used to show that at F-region heights it is possible to linearly combine the solar-driven and high-latitude driven solutions to obtain the total temperature structure and circulation to within 10–20%. In the lower thermosphere, however, non-linear terms cause significant departures and a linear superposition of fields is not valid.

The F-region winds at high latitudes calculated by the TGCM are also compared to the meridional wind derived from measurements by the Fabry-Perot Interferometer (FPI) and the zonal wind derived from measurements by the Wind and Temperature Spectrometer (WATS) instruments onboard the Dynamics Explorer (DE−2) satellite for a summer and a winter day. For both examples, the observed and modeled wind patterns are in qualitative agreement, indicating a dominant control of high latitude winds by ion drag. The magnitude of the calculated winds (400–500 m s−1) for the assumed 60 kV cross-tail potential, however, is smaller than that of the measured winds (500–800 m s−1). This suggests the need for an increased ion drag momentum source in the model calculations due to enhanced electron densities, higher ion drift velocities, or some combination that needs to be further denned from the DE−2 satellite measurements.  相似文献   


10.
A study is made of the intensity distribution among the bands of the Meinel and first negative system of N2+ due to resonance scattering of sunlight. Absolute transition probabilities are used to calculate the relative populations among the ion states under resonance scattering conditions; the mean lifetime for deactivation is the parameter which determines the amount of resonance scattering. Photon scattering rates are calculated for most of the ion bands and it is suggested that an appropriate value for the 3914 Å band would be 0·050 photons/ sec per ion. Observations of the Δυ = −1 sequence of the first negative system in the twilight spectrum are reported. Extended vibrational development is detected which indicates that only about 80 per cent of the emission is resonance scattered. Sunlit auroral spectra of N2+, however, which have been generally considered to be due predominantly to resonance scattering, indicates only about 40 per cent of the emission is due to resonance scattering. Measurable effects resulting from a charge-transfer ion source (O+(2D)) are predicted.  相似文献   

11.
We use a 1-D chemical diffusive model, in conjunction with the measured neutral atmospheric structure, to analyze the Voyager RSS electron density, ne, profiles for the ionospheres of Jupiter and Saturn. As with previous studies we find serious difficulties in explaining the ne measurements. The model calculates ionospheres for both Jupiter and Saturn with ne peaks of 10 times the measured peaks at altitudes which are 900–1000 km lower than the altitude of peaks in the RSS electron densities. Based on our knowledge of neutral atmospheric structure, ionization sources, and known recombination mechanisms it seems that, vibrational excitation of H2 must play some role in the conversion of slowly radiatively recombining H+ ions to the relatively more rapidly recombining H2+ and H3+ ions. In addition, vertical ion flow induced by horizontal neutral winds or electric fields probably also play some role in maintaining the plasma peaks observed both for Jupiter and Saturn to be at high altitudes. For the ionosphere of Saturn, the electron densities are affected by a putative influx of H2O molecules, ΦH2O, from the rings. To reproduce the RSS V2 exit ne results model requires an influx of ΦH2O 2 × 107 molecules cm−2 s−1 without invoking H2f vibrational excitation. To maintain the model ne peak at the measured altitude vertical plasma drift maintained by meridional winds or vertical electric fields is required. The amounts of H2O are consistent with earlier estimates of Connerney and Waite (1984) and do not violate any observational constraints.  相似文献   

12.
Auroral luminosities of the main emission lines in the aurora have been calculated for excitation by an isotopic primary electron flux with spectra of the form J(E) = AE exp (−E/E1) + B(E2)E exp (−E/E1). The variation of emissions from O and N2+ with height are shown, as are the variations of column integrated intensities and pertinent intensity ratios with the characteristic energy E2, this leading to a method of estimating the electron spectrum from ground observation.  相似文献   

13.
First mass-spectrometric composition measurements of atmospheric ions between 3250 and 11700 m altitude are reported. They reveal the presence of very massive cluster ions, the majority of which cannot be attributed to a single hydrated ion family like, for example H+(H2O)n. The observed fraction of very massive ions increases with decreasing altitude. Masses as large as about 540 amu were observed at 8200 m altitude. Implications of the observations for ion and nucleation processes are discussed.  相似文献   

14.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

15.
The distribution of atomic hydrogen in the thermosphere and exosphere is computed taking into account the upward flow which balances the escape flux. Because of the upward flow the number-density gradient is much steeper than it would be in a static atmosphere. Attention is drawn to the fact that the ratio of the amount of hydrogen above the 100 or 110km levels to the amount of hydrogen above the 200 or 300 km levels is a sensitive measure of the temperature of the exosphere. The evidence on the absolute abundance of atomic hydrogen is examined. It is concluded that the number density at the 120km level is probably about 5 × 105/cm3. The Ly. absorption line at this level is beyond the linear part of the curve of growth.

Consideration is also given to the steady-state distributions of O+ and H+ ions. In the lower part of the exosphere the number density of O+ ions falls with increase in altitude (the associated scale height being twice that of the O atoms) and the number density of H+ ions rises at the same rate (as was first pointed out by Dungey). The altitude at which the number densities of O+ and H+ ions become equal is calculated on various assumptions regarding the temperature and hydrogen content of the exosphere. It is found to be about 1200 km when the temperature is 1250° K and the hydrogen content corresponds to the number density cited near the end of the preceding paragraph. The gradient of the predicted electrondensity distribution at several Earth radii is much less than that deduced from whistler studies.

The passage from charge transfer to diffusive equilibrium is discussed in an Appendix.  相似文献   


16.
We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He+ ions and the major atmospheric constituents N2, O2, and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He+ ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.  相似文献   

17.
The behaviour of O2+ at L = 3 in the plasmasphere is studied. Starting with a low O2+ flux-tube content to characterize post-magnetic-storm conditions the time-dependent equations of continuity and momentum for O2+ are solved to give densities and fluxes for a period of several days using both sunspotmaximum and sunspot-minimum parameters. Our results show large amounts of O2+ near the equator at sunspot maximum but relatively little at sunspot minimum, and emphasize the key role of the collisional process between O2+ and O+. It is the combined effects of O2+---O + collisions and thermal diffusion that lead to the large O2+ densities near the equator at sunspot maximum. Both of these mechanisms have less influence at sunspot minimum. At sunspot maximum the O+ layer acts as a collisional barrier below the O2+ production region preventing O2+ from sinking towards regions of high recombination rate. In this production region the effects of thermal diffusion are small and upward flow of O2+ results from the action of the O2+ pressure gradient and the polarization electric field. When the upward flowing O2+ reaches regions in which thermal diffusion has a strong influence it is accelerated to even higher altitudes. The O + barrier is so effective that the diurnal variation of the O+ layer is reflected in the diurnal variation of O2+ near the equator at sunspot maximum. Our sunspot maximum results also indicate that certain types of temperature profiles are more likely to enhance equatorial O2+ densities. The existence of large temperature gradients below 1000 km altitude does not help the flow of O2+ towards the equator. The associated changes in the O+ layer lead to more O2+-O +collisions and a smaller O2+ thermal-diffusion coefficient, the latter being sensitive to the ratio n(H+)/n(O+).  相似文献   

18.
Vertical fluxes of ionization in the F2 region have been measured by the incoherent scatter technique over Millstone Hill in 1969. The results obtained near midnight for the region above hmaxF2 have been examined to determine whether there is a significant flux of ionization from the magnetosphere to the ionosphere that serves to maintain the F-layer. It is found that H+ ions are a minor constituent over the altitude range in which useful measurements can be made, so that any conclusion must rest upon properly interpreting the observed O+ fluxes. By selecting periods when the layer did not appear to be decaying rapidly it was hoped to find cases where the O+ flux did not vary with altitude in the range 500 h 800 km (i.e. where losses are unimportant), since this would imply that the flux is of magnetospheric origin.

While three cases exhibited this behaviour, the majority exhibited a decrease in the O+ flux with height, indicating that the layer was descending. Attempts to correct for this were made, and the average flux from the magnetosphere was estimated as 3 × 107 el/cm2/sec. This is in fair agreement with other recent estimates, and implies that at this latitude the ionosphere is not maintained solely by the magnetospheric flux. Moreover, large increases in flux that could give rise to nocturnal increases in the total content of the layer do not appear to have been seen.  相似文献   


19.
Using the 13.7 m millimeter-wave telescope at the Qinghai Station of Purple Mountain Observatory, we have made observations of 13CO, C18O, HCO+ and N2H+ molecular lines towards IRAS 02232+6138. As the excitation density of the probe molecule increases from 13CO to HCO+, the size of the cloud core associated with IRAS 02232+6138 decreases from 2.40 pc to 0.54 pc, and the virial mass of the cloud core decreases from 2.2 × 103M to 5.1 × 102M. A bipolar molecular outflow is found towards IRAS 02232+6138. Using the power function n(r) ∝ r to fit the spatial density structure of the cloud core, we obtain the power-law index  = 2.3 − 1.2; and we find that, as the probed density increases, the power function becomes more flat. The abundance ratio of 13CO to C18O is 12.4 ± 6.9, comparable with the values 11.8 ± 5.9 for dark clouds and the values 9.0–15.6 for massive cores. The abundance of N2H+ molecules is 3.5 ± 2.5 × 10−10, consistent with the value 1.0 − 5.0 × 10−10 for dark cloud cores and the value 1.2 − 12.8 × 10−10 for massive cores. The abundance of HCO+ molecules is 0.9 ± 0.5 × 10−9, close to the value 1.6 − 2.4 × 10−9 for massive cores. An increase of HCO+ abundance in the outflow region was not found. Combining with the IRAS data, the luminosity-mass ratio of the cloud core is obtained in the range 37–163(L/M). Based on the IRAS luminosity, it is estimated that a main-sequence O7.5 star is probably embedded in the IRAS 02232+6138 cloud core.  相似文献   

20.
We have computed optical absorption-line profiles of CH+ and CH, as predicted by a model of a C-type shock propagating in a diffuse interstellar cloud. Both these species are produced in the shock wave in the reaction sequence that is initiated by C+(H2, H)CH+. Whilst CH+ flows at the ion speed, CH, which forms in the dissociative recombination reaction CH+3(e, H2)CH, flows at a speed which is intermediate between those of the ions and the neutrals. The predicted velocity shift between the CH+ and CH line profiles is found to be no more than approximately 2 km s−1, which is smaller than has previously been assumed. We also investigate OH and HCO+, finding that the correlation between their column densities, recently observed in the diffuse interstellar medium, can be reproduced by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号