首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous measurements from THEMIS spacecraft,GOES-11 and ground stations(Canadian Array for Realtime Investigations of Magnetic Activity or CARISMA,and 210°magnetic meridian or MM)on March 18,2009 allow the study of dynamic processes in the near-Earth magnetotail and corresponding Pi2 pulsations on the ground in great detail.Fast earthward flows along with traveling Alfvén waves and fast mode waves in the Pi2 band were observed by three Time History of Events and Macroscale Interactions during Substorms(THEMIS)probes(P3,P4 and P5)in the near-Earth plasmasheet.At the mid-to high-latitude nightside,the CARISMA stations located near the foot points of the three probes recorded Pi2s with two periods,about 80 s after the earthward fast flows observed by the P4 probe.The long-period Pi2(140–150 s)belongs to the transient response Pi2(TR Pi2),since the travel time of the Alfvén waves between the plasma sheet and CARISMA stations is very close to half the period of the long-period Pi2.The short-period Pi2(60–80 s)has the same period band as the perpendicular velocity of the fast flows,which indicates that it may relate to the inertial current caused by periodic braking of the earthward fast flows.The 210°MM stations located at the low-latitude duskside also observed Pi2s with the same start time,waveform and frequency,about~120 s after the earthward fast flows.Strong poloidal oscillations are shown by GOES-11(~23 MLT)and the compressional component(Bb)is highly correlated with H components of the 210°MM stations,whereas the other two components(Br and Be)are not.These results confirm that the low-latitude Pi2s are generated by cavity mode resonance,which is driven by an impulsive broadband source in the near-Earth magnetotail.  相似文献   

2.
The configuration of the solar corona magnetic field has been studied. Data on the position of the K-corona emission polarization plane during the solar eclipses of September 21, 1941; February 25, 1952; and August 1, 2008, were used as an indicator of the magnetic field line orientation. Based on an analysis of these data, a conclusion has been made that the studied configuration has a large-scale organization in the form of a cellular structure with an alternating field reversal. The estimated cell size was 61° ± 6° (or 36° ± 2°) in longitude with a latitudinal extension of 40°?C50° in the range of visible distances 1.3?C2.0 R Sun . A comparison of the detected cellular structure of the coronal magnetic field with synoptic {ie908-1} maps indicated that the structure latitudinal boundaries vary insignificantly within 1.1?C2.0 R Sun . The possible causes of the formation of the magnetic field large-scale cellular configuration in the corona and the conditions for the transformation of this configuration into a two-sector structure are discussed.  相似文献   

3.
Results of fractal analysis of ultra-low-frequency (ULF) emissions registered at a low-latitude observatory, Guam (geomagnetic coordinates Φm=9°N, Λm=225°), and at a high-latitude drifting station, North Pole-30 (Φm=75°N, Λm=172°), are presented. The first set of data covers a long period of observations (20 months) including the strong (Ms=8) Guam earthquake of 8 August 1993. The second set of data covers a short period of observations (21 days) in April 1989 during the preparation phase of the big magnetic storm of 25 April 1989. Definite peculiarities in the behavior of ULF emission scaling (fractal) characteristics have been found, which are discussed on the basis of the self-organized criticality concept. The principal common peculiarity for magnetosphere–ionosphere and lithosphere systems is detection of flicker noise (β∼1, D0∼2) in a certain frequency range on the preparation phase of strong magnetospheric and seismic events.  相似文献   

4.
Tholeiitic basalt glasses from the FAMOUS area of the Mid-Atlantic Ridge are among the most primitive basaltic liquids reported from the ocean basins. One of the more primitive of these[Mg/(Mg+Fe2+) = 0.68;Ni= 232ppm;TiO2 = 0.61] glasses (572-1-1) was selected for an experimental investigation. This study found olivine to be the liquidus phase from 1 atm to 10.5 kbar where it is replaced by clinopyroxene. The sequence of appearance of phases at 1 atm pressure is olivine (1268°C), plagioclase (1235°C) and clinopyroxene (1135°C). The sample is multiply saturated at 10.5 kbar with olivine (Fo88), clinopyroxene (Wo32En60Fs9), and orthopyroxene (Wo5En83Fs12). From the 1-atm data we have measured (FeO/MgO) olivine/(FeO*/MgO) liquid (K′D) for olivine-melt pairs equilibrated at 12 temperatures in the range 1268–1205°C.K′D varies from 0.30 at 1205°C to 0.27 at 1268°C. Analysis of high-pressure olivine melt pairs indicates a systematic increase inK′D with pressure.Evaluation of the 1-atm experiments reveals that fractionation of olivine followed by olivine + plagioclase can generate much of the variation in major element chemistry observed in the FAMOUS basalt glasses. However, it cannot account for the entire spectrum of glass compositions — particularly with respect to TiO2 and Na2O. The variations in these components are such as to require different primary liquids.Comparison of clinopyroxene microphenocrysts/xenocrysts found in oceanic tholeiites with experimental clinopyroxenes reveal that the majority of those in the tholeiites may have crystallized from the magma at pressures greater than ~ 10 kbar and are not accidental xenocrysts. Clinopyroxene fractionation at high pressures may be a viable mechanism for fractionating basaltic magmas.The major and minor element mineral/meltK′d's from our experiments have been used to model the source region residual mineralogy for given percentages of partial melting. These data suggest that ~20% partial melting of a lherzolite source containing 0–10% clinopyroxene can generate the major and minor element concentrations in the parental magmas of the Project FAMOUS basalt glasses.  相似文献   

5.
The effect of auroral electrojets on the variations in the low-latitude geomagnetic disturbances and Dst during a strong magnetic storm of November 20–21, 2003, with Dst ≈ ?472 nT has been studied based on the global magnetic observations. It has been indicated that the magnetospheric storm expansive phase with Δt ≈ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 30–100 nT in the premidnight-dawn sector. A growth of negative low-latitude ΔH values and Dst is mainly caused by regular convection electrojets with Δt ≥ 10 h, the centers of which shift to latitudes of ~ 50°–55° during the storm development. It has been established that the maximal low-latitude values of the field ΔH component at 1800–2400 MLT are observed when the auroral luminosity equatorward boundary shifts maximally southward during an increase in the negative values of the IMF B z component. It has been assumed that, during this storm, a magnetic field depression at low latitudes was mainly caused by an enhancement of the partially-ring current which closes through field-aligned currents into the ionosphere at the equatorward boundary of the auroral luminosity zone.  相似文献   

6.
Increases in solar protons and variations in the electron and proton fluxes from the outer radiation belt are studied based on the GLONASS satellite measurements (the circular orbit at an altitude of ~20000 km with an inclination of ~65°) performed in December 2006. Indications in the channels, registered protons with energies of Ep = 3–70 MeV and electrons with energies of Ee > 0.04 and >0.8 MeV, are analyzed. The data on electrons with Ee = 0.8–1.2 MeV, measured on the Express-A3 geostationary satellite, are also presented. Before the strong magnetic storm of December 14 (|Dst|max = 146 nT), the maximum of the outer belt electrons with the energy >0.7 MeV was observed at L ~ 4.5. After the storm, the fluxes of these electrons increased by more than an order of magnitude as compared to the prestorm level, and the maximum of a “new” belt shifted to L < 4 (minimal L reached by the GLONASS orbit). Under quiet geomagnetic conditions, solar protons with the energies >3 MeV fill only high-latitude legs of the GLONASS orbit. During the strong magnetic storm of December 15, the boundary of proton penetration into the magnetosphere almost merged with the orbital maximum of the proton radiation belt.  相似文献   

7.
Using the Cut And Paste (CAP) method, we invert the focal mechanism of 38 moderate earthquakes (MS ≥ 3.0) recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum spatial rotation angle. Our results indicate that the MS 6.4 mainshock is induced by a lateral strike slip fault (with a rake angle of ~ ?165°) and a little normal-faulting component event along a nearly vertical plane (dipping angle~ 79° and strike ~138°). Combining our results with high resolution catalog, we argue that the seismogenic fault of this earthquake sequence is a secondary fault western to the major Weixi-Qiaohou-Weishan fault. The focal mechanism evolution can be divided into three periods. During the first period, the foreshock sequence, the focal mechanism consistency is the highest (KA<36°); during the second period which is shortly after the mainshock, the focal mechanism shows strong variation with KA ranging from 8° to 110°; during the third period, the seismicity becomes weak and the focal mechanism of the earthquakes becomes more consistent than the second period (18°<KA<73°). We suggest that the KA, to some extent, represents the coherence between local tectonic stress regime and the stress state of each individual earthquake. Furthermore, high focal mechanism consistency and high linearity of seismic distribution may serve as indicators for the identification of foreshock sequence.  相似文献   

8.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

9.
Blithfield (EL6) is one of five known enstatite chondrite breccias. It consists of troilite-rich clasts (35 ± 5vol.%) embedded in an extremely metallic Fe,Ni-rich matrix (65 ± 5 vol.%) that contains metal nodules up to 17 mm in size. Clasts and matrix agglomerated independently in the solar nebula under conditions of high and lowpS2/pO2 ratios, respectively. The matrix accreted to an EL chondrite planetesimal and was metamorphosed to~ 1000°C, above the FeNiS eutectic; chondrule textures were obliterated. The S-rich eutectic melt was lost from the matrix. The matrix material was buried to a depth of at least 3 km; accreting troilite-rich material was incorporated into the matrix as clasts. The breccia cooled through~ 500°C at 1000–10,000°C/Myr. After cooling below~ 500°C, Blithfield was quenched, possibly by impact excavation from depth and deposition onto the surface.Clasts or inclusions that are enriched in sulfide and depleted in metallic Fe,Ni are common in brecciated enstatite chondrites. Variations in thepS2/pO2 ratio in the nebular regions where these materials formed may explain many of their petrologic properties. The silica-rich clasts in Adhi Kot (EH4) formed at very highpS2/pO2ratios(> 1027); niningerite, free silica and troilite were produced from the sulfurization of enstatite and metallic Fe. The troilite-rich clasts in Blithfield and Atlanta (EL6) as well as the troilite-rich regions of the Hvittis (EL6) matrix formed at somewhat lowerpS2/pO2 ratios where sulfurization of metalic Fe produced troilite. The Ni content of the residual metal increased, forming some metal of martensitic composition. The dark inclusions in Abee (EH 4), which contain up to 9 wt.% oldhamite, formed at highpS2/pO2 ratios in the presence of an additional Ca-rich component.  相似文献   

10.
Geomagnetic pulsation in the Pc3-4 bands have been studied at high Antarctic latitudes during the local summer. The statistical relation between the occurrence probability of Pc3 and Pc4 pulsations and the solar wind (SW) and IMF parameters has been revealed by verifying the hypothesis that an indication is identical in two distributions. Different dependences of the occurrence probability of high-latitude Pc3 and Pc4 pulsations on the IMF value and orientation and SW density and velocity have been found out. It has been indicated that these dependences remain unchanged in the range of geomagnetic latitudes from 66° to 87°. It has been established that the Pc3 observation probability at small (20°–50°) IMF cone angles (θ = cos?1(B x/|B|)) is a factor of 1.5 higher than the average statistical probability and depends on the IMF value, which confirms the hypothesis that the Pc3 source is the turbulent region upstream of the magnetospheric quasiparallel low shock. On the contrary, the probability of occurrence of Pc4 weakly depends on the IMF cone angle and is maximal at θ ~ 0° and ~90°. With increasing negative B z values, the generation probability increases in the Pc4 band and tends to decrease in the Pc3 band. It has been found out for the first time that the dependence of the Pc4 occurrence probability on the IMF clock angle (? = tan?2 (B/B z) is identical in the regions of projections of closed and open field lines, whereas this dependence is different for Pc3. In the region of projections of closed field lines, the Pc3 occurrence probability increases at B z < 0 and B y > 0 (the condition under which the cusp shifts on the dawn side) and at B y < 0 and B z > 0 (which is typical of the formation of the low-latitude boundary plasma sheet). In the region of projections of open field lines such a probability increases at B y < 0 and B z < 0 (which results in the formation of the high-latitude boundary plasma sheet). Based on the discovered regularities, the conclusion has been made that the sources of generation of high-latitude Pc3 and Pc4 pulsations are different.  相似文献   

11.
The effects of dyke intrusion on the magnetic properties of host sedimentary rocks are still poorly understood. Therefore, we have evaluated bulk magnetic parameters of standard palaeomagnetic samples collected along several sections across the sediments hosting the Foum Zguid dyke in southern Morocco. The study has been completed with the evaluation of the magnetic fabric after laboratory application of sequential heating experiments.The present study shows that: (1) close to Foum Zguid dykes, the variations of the bulk magnetic parameters and of the magnetic fabric is strongly related with re-crystallization and Fe-metasomatism intensity. (2) The thermal experiments on AMS of samples collected farther from the dyke and, thus, less affected by heating during dyke emplacement, indicate that 300–400 °C is the minimum experimental temperature necessary to trigger appreciable transformations of the pre-existing magnetic fabrics. For temperatures higher than ca. 580 °C, the magnetic fabric transformations are fully realized, with complete transposition of the initial fabric to a fabric similar to that of samples collected close to the dyke. Therefore, measured variations of the magnetic fabric can be used to evaluate re-crystallization temperatures experienced by the host sedimentary rock during dyke emplacement. The distinct magnetic behaviour observed along the cross-sections strongly suggests that samples collected farther from the dyke margins did not experience thermal episodes with temperatures higher than 300 °C after dyke emplacement. (3) AMS data shows a gradual variation of the magnetic fabric with distance from the dyke margin, from sub-horizontal K3 away from the dyke to vertical K3 close to the dyke. Experimental heating shows that heat alone can be responsible for this strong variation. Therefore, such orientation changes should not be unequivocally interpreted as the result of a stress field (resulting from the emplacement of the dyke, for instance). (4) Magnetic studies prove to be a very sensitive tool to assess rock magnetic transformations, thermally and chemically induced by dyke intrusion in hosting sediments.  相似文献   

12.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

13.
The geomagnetic and auroral response to the variations in the solar wind dynamic pressure (Pd) are investigated in the periods of positive values of the IMF B z component. It is shown that the growth of Pd results in the intensification of luminosity along the auroral oval and in the poleward expansion of the poleward boundary of luminosity (PBL) in the nightside part of the oval by ~7° in latitude at a velocity of ~0.5 km/s and is accompanied by an enhancement of the DP2-type current system. A decrease in Pd, accompanied by an abrupt reversal of the IMF B y polarity from positive to negative, results in an enhancement of the westward electrojet and in a poleward shift of PBL and electrojet center. The conclusion has been made that the available three types of auroral response to Pd variations differ in the azimuthal velocity of the luminosity region or particle precipitation along the auroral oval: V 1 ~ 30–40 km/s, V 2 ~ 10, and V 3 ~ 1 km/s.  相似文献   

14.
The observations of the variations in the vertical component of the atmospheric electric field (E z ) at Swider midlatitude Poland observatory (geomagnetic latitude 47.8°) under the conditions of fair weather during 14 magnetic storms have been analyzed. The effect of the magnetic storm main phase in the daytime midlatitude variations in E z in the absence of local geomagnetic disturbances has been detected for the first time. Considerable (~100–300 V m?1) decreases in the electric field strength (E z ) at Swider observatory were observed in daytime simultaneously with the substorm onset in the nighttime sector of auroral latitudes (College observatory). The detected effects indicate that an intensification of the interplanetary electric field during the magnetic storm main phase, the development of magnetospheric substorms, and precipitation of energetic electrons into the nighttime auroral ionosphere can result in considerable disturbances in the midlatitude atmospheric electric field.  相似文献   

15.
Ultrasonic compressional wave velocity Vp and quality factor Qp have been measured in alkali basalt, olivine basalt and basic andesite melts in the frequency range of 3.4–22 MHz and in the temperature range of 1100–1400°C. Velocity and attenuation of the melts depend on frequency and temperature, showing that there are relaxation mechanisms in the melts. Complex moduli are calculated from the ultrasonic data. The results fit well a complex modulus of Arrhenius temperature dependence with log-normal Gaussian distribution in relaxation times of attenuation. The analysis yields average relaxation time, its activation energy, relaxed modulus, unrelaxed modulus and width of Gaussian distribution in relaxation times. Relaxed modulus is smaller (17.5 GPa) for basic andesite melt of high silica and high alumina contents than for the other two basalt melts (18.1–18.4 GPa). The most probable relaxation times decrease from ~ 3 × 10?10 s for basic andesite to ~ 10?11 s for alkali basalt at 1400°C. Activation energies of attenuation, ranging from 270 to 340 kJ mol?1 in the three melts, are highest in basic andesite. Longitudinal viscosity values and their temperature dependences are also calculated from Vp and Qp data. The volume viscosity values are estimated from the data using the shear viscosity values. Longitudinal, volume and shear viscosities and their activation energies are highest in the basic andesite melt of the most polymerized structure.  相似文献   

16.
It has been an enigma that in the Tieschitz, H3, and other unequilibrated chondrites the silicates show quench textures yet their metallic minerals, according to the Wood [6] model, appear to have cooled extremely slowly.In Tieschitz, spherical metallic chondrules up to 500 μm in diameter, with textures indicating an origin as liquid droplets, consist of polycrystalline intergrowths of α(kamacite), γ(taenite) and troilite. Interface Ni compositions of contiguous α (~5 wt.%) and γ (~50 wt.%) grains define equilibrium tie-line relationships in the Fe-Ni system indicating equilibration to ~350°C (620 K). Polycrystalline γ(taenite) is multi-zoned with respect to Ni and is interpreted as the relict of a primary solidification structure. A mechanism whereby Ni compositional heterogeneities were produced in γ(taenite) by the rapid, non-equilibrium cooling of FeNiS melts during chondrule formation is discussed.Comparisons with lunar metal globules indicate solidification rates for Tieschitz metallic chondrules in the range 1–106 K/s. It is suggested that before or during aggregation, sub-solidus cooling in the temperature range ~700–1400°C with cooling times of days to weeks allowed the preservation of a relict solidification structure in metallic chondrules. At a temperature of ~700°C accretion and shallow burial (1–10 m) on the surface of the Tieschitz parent body provided insulation with slower cooling required to nucleate and grow α(kamacite) from the heterogeneous γ(taenite) under equilibrium conditions by the process of solid state diffusion proposed by Wood [6]. The cooling rate (1 K/106 yr) through 500°C derived using the Wood model is shown to be an underestimate of the real cooling rate of Tieschitz metal through that temperature, since it does not take into account Ni heterogeneities produced at higher temperatures. A rough estimate of the post-accretional cooling rate is obtained from the average size of α(kamacite) grains(<100 μm) andTeqα ~ 350°C indicating a cooling rate of the order of<1K/103yr through 500°C.  相似文献   

17.
The combination of magnetic and geochemical methods was used to determine the mineralogy, grain size and domain structure of magnetic particles in indoor dust collected in 195 sites in Warsaw, Poland. Data show an asymmetric distribution of magnetic susceptibility (χ) in the wide range of 20–1514 × 10?8 m3 kg?1. Comparison of magnetic parameters shows that the internal dust contains outside pollution characteristic for air and soil. More than 90% of indoor dust samples were characterized by roughly uniform magnetic mineralogy, typical for fine grained magnetite (diameter of 0.2–5 μm), and grain size between pseudo-single-domain and small multi-domain with small contribution of superpara-magnetic particles (~10%). Samples with χ larger than 220 × 10?8 m3 kg?1 contain mainly magnetite and an anthropogenic metallic Fe with T C > 700°C. The indoor dust contains, characteristic for the urban areas, spherical magnetic particles originated from fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements, including Na, Ca, Al, Si, K, S, Mn, Cl, and Mg.  相似文献   

18.
The dynamics of energetic electrons (E e =0.17–8 MeV) and protons (E p =1 MeV) of the outer radiation belt during the magnetic storm of May 15, 2005, at high (GOES-10 and LANL-84 geosynchronous satellites) and low (Meteor-3M polar satellite) altitudes is analyzed. The data have been compared to the density, plasma velocity, solar wind, and magnetic field measurements on the ACE satellite and geomagnetic disturbances. During the magnetic storm main phase, the nighttime boundary of the region of trapped radiation and the center of westward electrojet shifted to L ~ 3. Enhancements of only low-energy electrons were observed on May 15, 2005. The belt of relativistic electrons with a maximum at L ~ 4 was formed during the substorm, the amplitude of which reached its maximum at ~0630 UT on May 16. The results are in good agreement with the regularity relating the position of a maximum of the new relativistic electron belt, boundaries of the trapped radiation region, and extreme low-latitude position of westward electrojet center to the Dst variation amplitude.  相似文献   

19.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, landslide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mechanism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic framework might be the main cause of the frequent occurrence of MS6.0~6.9 earthquakes in the area.  相似文献   

20.
Two large earthquakes occurred in the western part of China in 2008, one of them being the Yutian (35.6°N, 81.6°E) M7.3 earthquake that occurred on March 21 (BJT) and the other the Wenchuan (31.0°N, 103.4°E) M8.0 earthquake that occurred on May 12 (BJT). In this paper, the West Continental China (included in 20.0°–50.0°N, 70.0°–110.0°E region) was the study region for verifyong the predictability of the pattern informatics (PI) method using the receiver-operating characteristic curve (ROC) test and R score test. Different forecasting maps with different calculating parameters were obtained. The calculating parameters were the grid size Δx, base time t b, reference interval t b to t 1, change interval t 1 to t 2, and forecasting interval t 2 to t 3. In this paper, the base time t b fixed to June 1, 1971, the ending forecast time t 3 fixed to June 1, 2008, and the forecasting interval t 2 to t 3 changed from 1 to 10 years, and the grid sizes were chosen as 1° × 1° and 2° × 2°, respectively. The results show that the PI method could forecast the Yutian M7.3 and Wenchuan M8.0 earthquakes only using suitable parameters. Comparing the forecast results of grid sizes 1° × 1° and 2° × 2°, the models with 2° × 2° grids were better. Comparing the forecast results with different forecasting windows from 1 to 10 years, the models with forecasting windows of 4–8 years were better using the ROC test, and the models with forecasting windows of 7–10 years were better using the R score test. The forecast efficiency of the model with a grid size of 2° × 2° and forecast window of 8 years was the best one using either the ROC test or the R score test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号