首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Western foreland basin in Taiwan originated through the oblique collision between the Luzon volcanic arc and the Asian passive margin. Crustal flexure adjacent to the growing orogenic load created a subsiding foreland basin. The sedimentary record reveals progressively changing sedimentary environments influenced by the orogen approaching from the East. Based on sedimentary facies distribution at five key stratigraphic horizons, paleogeographic maps were constructed. The maps highlight the complicated basin-wide dynamics of sediment dispersal within an evolving foreland basin.The basin physiography changed very little from the middle Miocene (∼12.5 Ma) to the late Pliocene (∼3 Ma). The transition from a passive margin to foreland basin setting in the late Pliocene (∼3 Ma), during deposition of the mud-dominated Chinshui Shale, is dominantly marked by a deepening and widening of the main depositional basin. These finer grained Taiwan derived sediments clearly indicate increased subsidence, though water depths remain relatively shallow, and sedimentation associated with the approach of the growing orogen to the East.In the late Pleistocene as the shallow marine wedge ahead of the growing orogen propagated southward, the proximal parts of the basin evolved into a wedge-top setting introducing deformation and sedimentation in the distal basin. Despite high Pleistocene to modern erosion/sedimentation rates, shallow marine facies persist, as the basin remains open to the South and longitudinal transport is sufficient to prevent it from becoming overfilled or even fully terrestrial.Our paleoenvironmental and paleogeographical reconstructions constrain southward propagation rates in the range of 5–20 km/Myr from 2 Ma to 0.5 Ma, and 106–120 km/Myr between late Pleistocene and present (0.5–0 Ma). The initial rates are not synchronous with the migration of the sediment depocenters highlighting the complexity of sediment distribution and accumulation in evolving foreland basins.  相似文献   

2.
Detailed outcrop studies at the flanks of Al Kufrah Basin, Libya, reveal the nature of glacially-related sedimentation and post-depositional deformation styles produced in association with the Late Ordovician glaciation, during which ice sheets expanded northward over North Africa to deposit the Mamuniyat Formation. At the SE basin flank (Jabal Azbah), the Mamuniyat Formation is sand-dominated, and incises interfingering braidplain and shallow marine deposits of the Hawaz Formation. The glacially-related sediments include intercalations of mud-chip bearing tabular sandstones and intraformational conglomerates, which are interpreted as turbidite and debrite facies respectively. These record aggradation of an extensive sediment wedge in front of a stable former ice margin. An increase in mudstone content northward is accompanied by the occurrence of more evolved turbidites. A widespread surface, bearing streamlined NW–SE striking ridges and grooves, punctuates this succession. The structures on the surface are interpreted to have formed during a regional north-westward ice advance. Above, siltstones bearing Arthrophycus burrows, and Orthocone-bearing sandstones beneath tidal bars testify to glaciomarine conditions for deposition of the underflow deposits beneath. By contrast, the northern basin margin (Jabal az-Zalmah) is appreciably different in recording shallower water/paralic sedimentation styles and major glaciotectonic deformation features, although facies analysis also reveals northward deepening. Here, a siltstone wedging from 8 to 50 m toward the north was deposited (lower delta plain), succeeded by climbing ripple cross-laminated sandstones up to 60 m in thickness (distal through proximal delta mouth bar deposits) with occasional diamictite interbeds. These rocks are deformed by thrusts and > 50 m amplitude fault-propagation folds, the deformation locally sealed by a diamictite then overlain by conglomeratic lag during ultimate deglaciation. Integrating observations from both basin margins, a model of fluvial-dominated delta systems feeding a pulsed debrite and turbidite fan system in a shallow proglacial shelf is proposed.  相似文献   

3.
In the young and active tectonic belt of southwestern Taiwan, reconstructed stratigraphy in the distal part of the foreland basin reveals at least two regional unconformities with the younger ones covering the areas farther from the mountain belt. In contrast with the previously proposed monotonous basin development, the temporal–spatial distribution of the unconformities indicates the back-and-forth migration of the foreland basin margin. Three distinct episodes of rapid subsidence during the foreland basin development have also been identified. The onset of the basin development can be well constrained by the initial rapid subsidence at 4.4–4.2 Ma, which happened only in the proximal part of the basin. This was followed by two younger episodes of rapid subsidence events at 2–1.8 Ma and 0.45 Ma, which were encountered initially in the areas progressively farther from the orogenic belt.We propose a model of episodic tectonic evolution in the distal part of the foreland basin in southwestern Taiwan. During each episode of rapid subsidence, uplifting that corresponds to the forebulge began with a concurrent rapid subsidence in the areas closer to the basin center and was followed by rapid subsidence and deposition of widespread strata onlapping toward the basin margin. Part of the widespread strata and its overlying deposits would be eroded in the beginning of the next episode when the forebulge shifted toward the orogenic belt. In general, rate of forebulge migrating away from the orogenic belt during the early stage was slower than that derived from a previously proposed kinematic model of a steady migration of the orogenic belt. This might be due to a rifted and weaker lithosphere beneath the foreland basin. Once the foreland basin migrated onto the less stretched lithosphere, the basin would expand rapidly into the craton.  相似文献   

4.
The Early Cretaceous Fahliyan Formation (middle part of the Khami Group), is one of the important reservoir rocks in the Zagros Fold-Thrust Belt. The Zagros Fold-Thrust Belt is located on the boundary between the Arabian and Eurasian lithospheric plates and formed from collision between Eurasia and advancing Arabia during the Cenozoic. In this study area, the Fahliyan Formation with a thickness of 325 m, consists of carbonate rocks (limestone and dolomite). This formation overlies the Late Jurassic Surmeh Formation unconformably and underlies the Early Cretaceous Gadvan Formation conformably at Gadvan Anticline. The formation was investigated by a detailed petrographic analysis to clarify the depositional facies, sedimentary environments and diagenetic features in the Gadvan Anticline. Petrographic studies led to recognition of the 12 microfacies that were deposited in four facies belts: tidal flat, lagoon, and shoal in inner ramp and shallow open marine in mid-ramp environments. The absence of turbidite deposits, reefal facies, and gradual facies changes show that the Fahliyan Formation was deposited on a carbonate ramp. Calcareous algae and benthic foraminifera are abundant in the shallow marine carbonates of the Fahliyan Formation. The diagenetic settings favored productioning a variety of features which include cements from early to late marine cements, micritization, dolomitization, compaction features, dissolution fabric, and pores. The diagenetic sequence can be roughly divided into three stages: (1) eugenic stage: marine diagenetic environment, (2) mesogenic stage: burial environment, and (3) telogenic stage: meteoric diagenetic environment.  相似文献   

5.
The structural-stratigraphic history of the North Luconia Province, Sarawak deepwater area, is related to the tectonic history of the South China Sea. The Sarawak Basin initiated as a foreland basin as a result of the collision of the Luconia continental block with Sarawak (Sarawak Orogeny). The foreland basin was later overridden by and buried under the prograding Oligocene-Recent shelf-slope system. The basin had evolved through a deep foreland basin (‘flysch’) phase during late Eocene–Oligocene times, followed by post-Oligocene (‘molasse’) phase of shallow marine shelf progradation to present day.Seismic interpretation reveals a regional Early Miocene Unconformity (EMU) separating pre-Oligocene to Miocene rifted basement from overlying undeformed Upper Miocene–Pliocene bathyal sediments. Seismic, well data and subsidence analysis indicate that the EMU was caused by relative uplift and predominantly submarine erosion between ∼19 and 17 Ma ago. The subsidence history suggests a rift-like subsidence pattern, probably with a foreland basin overprint during the last 10 Ma. Modelling results indicate that the EMU represents a major hiatus in the sedimentation history, with an estimated 500–2600 m of missing section, equivalent to a time gap of 8–10 Ma. The EMU is known to extend over the entire NW Borneo margin and is probably related to the Sabah Orogeny which marks the cessation of sea-floor spreading in the South China Sea and collision of Dangerous Grounds block with Sabah.Gravity modelling indicates a thinned continental crust underneath the Sarawak shelf and slope and supports the seismic and well data interpretation. There is a probable presence of an overthrust wedge beneath the Sarawak shelf, which could be interpreted as a sliver of the Rajang Group accretionary prism. Alternatively, magmatic underplating beneath the Sarawak shelf could equally explain the free-air gravity anomaly. The Sarawak basin was part of a remnant ocean basin that was closed by oblique collision along the NW Borneo margin. The closure started in the Late Eocene in Sarawak and moved progressively northeastwards into Sabah until the Middle Miocene. The present-day NW Sabah margin may be a useful analogue for the Oligocene–Miocene Sarawak foreland basin.  相似文献   

6.
Ambient noise analysis in Northern Taiwan revealed obvious lateral variations related to major geological units. The empirical Green’s functions extracted from interstation ambient noise were regarded as Rayleigh waves, from which we analyzed the group velocities for period from 3 to 6 s. According to geological features, we divided Northern Taiwan into seven subregions, for which regionalized group velocities were derived by using the pure-path method. On average, the group velocities in mountain areas were higher than those in the plain areas. We subsequently inverted the S-wave velocity structure for each subregion down to 6 km in depth. Following the analysis, we proposed the first models of geology-dependent shallow S-wave structures in Northern Taiwan. Overall, the velocity increased substantially from west to east; specifically, the mountain areas, composed of metamorphic rocks, exhibited higher velocities than did the coastal plain and basin, which consist of soft sediment. At a shallow depth, the Western Coastal Plain, Taipei Basin, and Ilan Plain displayed a larger velocity gradient than did other regions. At the top 3 km of the model, the average velocity gradient was 0.39 km/s per km for the Western Coastal Plain and 0.15 km/s per km for the Central Range. These S-wave velocity models with large velocity gradients caused the seismic waves to become trapped easily in strata and, thus, the ground motion was amplified. The regionalized S-wave velocity models derived from ambient noises can provide useful information regarding seismic wave propagation and for assessing seismic hazards in Northern Taiwan.  相似文献   

7.
位于青藏高原中部班公错—怒江一线的中特提斯洋盆从早侏罗世至晚白垩世,经历了从板内裂谷—洋盆扩张—双向俯冲—碰撞闭合—整体造山的全部过程,构成一个完整的威尔逊旋回。作为"活动陆缘"的羌南盆地记载着中特提斯洋盆从形成—消亡的全部沉积历史:包括裂离阶段的陆相碎屑岩、洋盆扩张阶段的稳定型碳酸盐岩、板块俯冲阶段的活动型碎屑岩、火山岩、碰撞闭合阶段的前陆盆地和弧前盆地碎屑岩、碳酸盐岩及整体造山阶段的山间盆地陆相磨拉石建造。  相似文献   

8.
《Gondwana Research》2016,29(4):1566-1578
From October 2012 to October 2013, a seismic swarm released more than 7000 microearthquakes beneath the eastern Guadalquivir foreland basin. From double-difference relocations of 501 events (md > 1.5), we can image the active structures associated with this swarm. Most of the events occurred along two ~ N–S trending lineaments separated ~ 1 km. Relocation places most events at 4–6.5 km depth in the Iberian-massif basement below the basin. Moment tensor inversion yields strike-slip mechanisms consistent with the hypocenter alignments, attributing left-lateral motion to the N–S structures and right-lateral motion to the ESE–WNW ones, in compliance with the ~ NNW direction of the main compressive stress field in the central Betics. These structures respond to a vertical-axis bend in the mountain front associated with the protrusion of Sierra Cazorla east of the epicentral area. This bend is mimicked by concordant, gentle bends in the foreland units, which are evident from the surface geology as well as through structural elements like strike-slip faults, crisscrossing joints. In this context, the right-lateral shear zone responsible for the Torreperogil sequence is taking up deformation in the western limb of the foreland bend.  相似文献   

9.
The Kenting Mélange on the Hengchun Peninsula, Taiwan, formed through tectonic shearing of subduction complex lithologies, probably within the plate boundary subduction channel between the Eurasian and Philippine Sea plates, with further deformation and exhumation in the Pliocene–Pleistocene during arc–continent collision. Field relations reveal a structural gradation from normal stratified turbidite sequence (Mutan Formation) through broken formation to highly sheared Kenting Mélange containing allochthonous polygenic blocks. This gradation is consistent with an increase of average vitrinite reflection values from ~ 0.72% in the Mutan Formation through ~ 0.93% in the broken formation to ~ 0.99% in the mélange, suggesting temperatures of at least 140 °C during formation of the Kenting Mélange. Zircons from gabbro in the Kenting Mélange are dated as 25.46 ± 0.18 Ma, which together with geochemical data constrains the source to South China Sea oceanic lithosphere. In combination with the field relationships, vitrinite reflectance values, microfossil stratigraphy, and offshore geophysical data from S and SE Taiwan, we propose that the Kenting Mélange initially formed at the subduction plate boundary from off-scraped trench deposits. Minor Plio–Pleistocene microfossils (< 5%) occur within the mélange in proximity to slope basin of equivalent age and were likely sheared into the mélange during out-of-sequence thrusting associated with active arc–continent collision, which in the Hengchun Peninsula commenced after 6.5 Ma.  相似文献   

10.
The Western Foothills of Taiwan was known to be composed of Late Oligocene to Pleistocene shallow marine strata continuously deposited on the stable passive Chinese continental margin without significant stratigraphic break. Here we present multiple micropaleontological evidences, including occurrence of larger foraminifera Discocyclina dispansa ex. interc. sella-dispansa and calcareous nannoplanktons, to show that there are Middle Eocene marine strata (first named as the Chungliao Formation) exposed in the Tsukeng anticline of the Western Foothills, central Taiwan. Occurrences of intact tests with thin delicate outer rims and well-preserved embryonic chambers suggest that the Discocyclina dispansa ex. interc. sella-dispansa (Lutetian to Bartonian in the Tethys region) are buried indigenously on shallow inner shelf during an episodic transgression in the Early Middle Eocene. The conclusion is consistent with a biostratigraphy study of calcareous nannoplanktons (Zones NP14–15) in the shale/sandstone alternations overlying the Discocyclina-bearing bed of the Chungliao Formation and calcareous nannofossils of Zone NP16 integrated with an age dating of 38.8 ± 1 Ma (Late Middle Eocene) on zircon grains of the overlying Pinglin Tuff. The Middle Eocene syn-rift sequences (Chungliao Formation and Pinglin Tuff) exposed along the Tsukeng anticline are unconformably covered by the latest Oligocene–Miocene post-rift sequence, a scenario similar to what have been drilled in the East China Sea-Taiwan Strait-South China Sea. This rift basin (named as the Nantou Basin) is sitting on the Peikang Basement High margin which further extends southwestward to the Central Uplift of the Pearl River Mouth Basin in the northern slope of the South China Sea. The present work documents a hitherto unknown occurrence of the exposed early Tertiary marine rift basin sequence in the Western Foothills of Taiwan. The study extends our knowledge of the Western Foothills geohistory from the Late Oligocene downward to the Early Middle Eocene. The occurrence of the Paleogene Nantou rift basin in the Western Foothills may also suggest that there could have similar Paleogene rift sequences exposed in other parts of the Taiwan mountain belt like the Hsüehshan Range and the Central Range east of the Western Foothills.  相似文献   

11.
YU Ho-Shing 《地球学报》2009,30(Z1):90-90
Due to oblique arc-continent collision, the west-ern Taiwan foreland basin has evolved into three dis-tinct subbasins: an over-filled basin proximal to the Taiwan orogen, mainly distributed in the Western Foothhils and Coastal Plain provinces, a filled basin occupying the shallow Taiwan Strait continental shelf west of the Taiwan orogen and an under-filled basin distal to the Taiwan orogen in the deep marine Kaop-ing Slope offshore southwest Taiwan, respectively. The over-filled depositional phase is dominated by fluvial environments across the structurally controlled piggy-back basins. The filled depositional phase in the Taiwan Strait is characterized by shallow marine en-vironments and is filled by Pliocene-Quaternary sedi-ments up to 4,000 m thick derived from the Taiwan orogen with an asymmetrical and wedge-shaped cross section. The under-filled depositional phase is charac-teristic of deep marine environments in the wedge-top basins accompanied by active structures of thrust faults and mud diapers.  相似文献   

12.
Sedimentological and palynological studies on a series of slimes taken from a drill-well in the central part of the Kathmandu Basin and the Lukundol Formation at the southern margin of the basin indicate that the depositional environments of the Paleo-Kathmandu Lake changed at around 1 Ma. In the central part of the basin, the abrupt appearance of a fossiliferous 4 m thick sand bed, containing abundant fish teeth and gastropod opercula, and shell fragments, in an otherwise open-lacustrine mud sequence, suggests that a lowering of the water level occurred at about 1 Ma. The common occurrence of the green alga Pediastrum in the overlying mud beds implies that the lake remained shallow after the deposition of the sand bed. Changes in the depositional system of the Paleo-Kathmandu Lake at about 1 Ma are also recorded in the Lukundol Formation. Granitic gravel and detrital muscovite flakes, which are common in the Lower and Middle Members, disappear from the Upper Member. Paleocurrent directions in the Lower and Middle Members show flow from the north and east, whilst in the Upper Member they change to flow from the south. Sedimentary facies change from marginal lacustrine in the Middle Member, to a braided river facies in the Upper Member. These changes occurred at around 1 Ma, at the base of the Upper Member. They seem to have been caused by the initiation of rapid uplift of the Mahabharat Lekh, which was due to faulting and underthrusting along the Main Boundary Thrust System.  相似文献   

13.
兰坪中新生代沉积盆地演化   总被引:28,自引:0,他引:28  
牟传龙  王剑 《矿物岩石》1999,19(3):30-36
兰坪中新生代沉积盆地形成和演化与金沙江洋的俯消减及洋陆转换过程密切相关,记录了其盆-山转换过程,早二叠世晚期-晚二叠世时期,由于金沙江洋的俯冲消减,形成了金沙江弧-盆系的空间配置,兰坪地区成为弧后盆地,早中三叠世,金沙江弧-盆系及东西两侧的昌都-兰坪陆块和中咱-中甸陆块的构造沉积式样发生大的转米,开始了兰坪中新生代盆-山转换历史,由于弧陆碰撞作用,使得兰坪分国地由弧后盆地转化成弧后前陆舅地,盆地中  相似文献   

14.
湘西地区志留纪沉积体系及典型前陆盆地的形成模式研究   总被引:5,自引:0,他引:5  
李斌  胡博文  石小虎 《地学前缘》2015,22(6):167-176
湘西地区发育志留系中、下志留统碎屑岩地层,缺失上志留统。经沉积学综合研究,可以划分出滞留盆地、浊积扇、三角洲、潮坪滨岸等沉积体系,从下向上海平面逐渐下降,其物源来自于东南部雪峰隆起。湘西地区志留纪沉积盆地构造演化经历了前陆盆地的形成期、发展期及萎缩期、消亡期几个阶段。其沉积构造演化规律为:前陆盆地初始形成期发育深水滞留盆地沉积体系;前陆盆地发展期发育海相浊积扇沉积体系;前陆盆地萎缩期发育三角洲沉积体系,前陆盆地消亡期发育潮坪沙坝滨岸沉积体系。  相似文献   

15.
《Gondwana Research》2013,24(4):1342-1364
Based mainly on field geological observation and geochronologic data, six tectonic units have been recognized in western Inner Mongolia (China), including, from south to north: North China Craton (NCC), Southern Orogenic Belt (SOB), Hunshandake Block (HB), Northern Orogenic Belt (NOB), South Mongolia microcontinent (SMM), and Southern margin of Ergun Block (SME), suggesting that the tectonic framework of the CAOB in western Inner Mongolia is characterized by an accretion of different blocks and orogenic belts. The SOB includes, from north to south, fold belt, mélange, arc-pluton belt, and retroarc foreland basin, representing a southern subduction–collision system between the NCC and HB blocks during 500–440 Ma. The NOB consists also of four units: arc-pluton belt, mélange, foreland molasse basin, and fold belt, from north to south, representing a northern subduction–collision system between the HB and SMM blocks during 500–380 Ma. From the early Paleozoic, the Paleo-Asian oceanic domains subducted to the north and the south, resulting in the forming of the SOB and the NOB in 410 Ma and 380 Ma, respectively. This convergent orogenic system, therefore, constrained the consumption process of the Paleo-Asian Ocean in western Inner Mongolia. A double subduction–collision accretionary process is the dominant geodynamic feature for the eastern part of the CAOB during the early to middle Paleozoic.  相似文献   

16.
鄂尔多斯盆地西缘前陆盆地构造-沉积响应   总被引:2,自引:0,他引:2  
鄂尔多斯盆地西缘前陆地区在晚三叠世-中侏罗世经历了印支运动和燕山运动早期的影响,西缘整体抬升,西南和西北两个造山带开始显现,古地理为继承性的南湖北河格局,此时秦岭造山带的形成使西南地区由滨海相向湖沼相过渡。晚侏罗世-早白垩世是西缘地区前陆盆地形成时期,燕山中期逆冲推覆作用强烈,该区地层角度不整合发育,沉积记录的响应表现为南北向隆坳相间的前陆盆地格局,有别于前陆盆地形成始于晚三叠世的认识。晚白垩世-新生代是喜山运动的后期改造时期,地层角度不整合发育,沉积响应为平原沼泽相沉积。  相似文献   

17.
南盘江印支期前陆盆地中上三叠统深水浊积岩沉积特征   总被引:1,自引:0,他引:1  
南盘江印支期前陆盆地,于中晚三叠世发育了一套厚度较大,分布广泛的陆屑浊积岩。按照沉积结构,构造和岩性特征,可划分出四种浊积岩相类型。其沉积模式为海底扇,并具三个幕次的沉积活动,其物源来自盆地南端,即为印支板块与扬子板块碰撞形成的前陆褶冲带。经研究,百蓬期(T21)浊积盆地位于CCD面之下,而河口期(T22)和法郎期(T13)烛积盆地位于CCD面之上。  相似文献   

18.
The Ischigualasto Formation in northwestern Argentina contains abundant fluvial channel sandstones, overbank mudstones, and paleosols that were deposited in a northwest-trending continental-rift basin during Late Triassic time. In the study area the formation progressively thins from ~700 m in the west to ~400 m in the east, over a distance of 7 km. This thinning is accompanied by a relative decrease in the abundance of fluvial channel sandstones and an increase in mud-rich overbank deposits and paleosols. While preserved channel deposits in the formation are highly variable in terms of their size and stratigraphic distribution, four general channel forms can be recognized based on their overall cross sectional geometry and internal sedimentary structures. Of these, the dominant channel-body types are interpreted as the deposits of sandy multi-channel fluvial systems. The internal stratigraphic architecture of the Ischigualasto Formation indicates that during deposition, the central part of the basin was the location of a long-lived, north flowing, fluvial channel belt that received relatively continuous channel and proximal overbank deposition. To the east, however, channel-related deposition was more infrequent, resulting in enhanced pedogenic modification of alluvial deposits. The overall thickness and facies trends observed in the Ischigualasto Formation most likely correspond to variations in fault-related accommodation development within the basin during the time of deposition.  相似文献   

19.
The Paleoproterozoic McArthur Basin (McArthur Group) of northern Australia hosts world-class sedimentary ‘exhalative’ (SEDEX) McArthur type Zn–Pb deposits, which are largely hosted within a sequence of 1.64 Ga pyritic carbonaceous shales deposited in an extensional rift setting. A well-known example of these is McArthur River (or Here's Your Chance [HYC] Zn–Pb–Ag deposit). The ~ 1.78 Ga McDermott and ~ 1.73 Ga Wollogorang formations (Tawallah Group) both contain carbonaceous shales deposited in similar environments. Our observations suggest the carbonaceous facies of the Wollogorang Formation were deposited under mostly euxinic conditions, with periodically-high concentrations of sedimentary pyrite deposition. The carbonaceous shales in the older McDermott Formation contain considerably less early pyrite, reflecting a mostly sulfide-poor, anoxic depositional environment. Localized fault-bound sub-basins likely facilitated lateral facies variations, which is evident from synsedimentary breccias.The presence of evaporitic oxidized facies within the McDermott and Wollogorang formations, alongside evidence for synsedimentary brecciation in reduced shales are favourable criteria for SEDEX-style base metal deposition. Both formations overlie volcanic units, which could have been sources of base metals. Detailed X-ray petrography, new geochemical data and sulfur isotope data from historical drill cores indicate multiple horizons of stratiform and sediment breccia-hosted base metal sulfide within carbonaceous shale units, with high-grade Zn concentrations. A close association between sphalerite and ferromanganean dolomite alteration draws comparisons with younger SEDEX mineralization at HYC. Additionally, SEDEX alteration indices, used demonstrably as a vector to the younger orebodies, indicate the sedimentary rocks analyzed in this study are marginally below the ore window when compared to the overlying mineralized stratigraphy.Our data imply that localized active circulation of metalliferous brines occurred in the Tawallah Group basin. High-grade sulfide deposition in reduced facies alteration may represent distal expressions of larger SEDEX-style deposits. Furthermore, abundant pyrite and high molybdenum in the Wollogorang Formation suggest the global oceanic sulfate concentration was sufficient by ~ 1.73 Ga to engender intermittent but strong bottom-water euxinia during shale deposition, thus providing a robust chemical trap for base metal sulfide mineralization.  相似文献   

20.
U-Pb data from the Rinkian fold Belt, western Greenland, provide new constraints on provenance and timing of deposition of the Karrat Group, the emplacement interval of the Prøven Igneous Complex, and the tectonic setting of west Greenland during the interval 2.03–1.83 Ga. U-Pb detrital data establish the entire Karrat Group metasedimentary succession as Paleoproterozoic in age, initiated after ca. 2029 Ma (Qeqertarssuaq Formation), with deeper water deposition after 1953 ± 31 Ma and 1905 ± 20 Ma (Nûkavsak Formation). The detrital age profiles highlight a profound change in source region after ca. 1.95 Ga that we attribute to thickening, uplift, and exhumation related to collision of a juvenile magmatic arc with the northwest margin of Rae craton at ca. 1.97–1.95 Ga (Thelon Orogen). Accordingly, the Karrat Group is viewed as having initiated as an extensional rift basin(s) that received ca. 3.00–2.95 Ga detritus from local basement sources, and which evolved into a deeper water foreland-basin succession derived from the north. This foreland basin was intruded by the Prøven Igneous Complex, for which new U-Pb data establish emplacement between 1.90 and 1.87 Ga in a within-(Rae) plate setting. Prøven plutonism is coeval with lower-plate mantle magmatism elsewhere across NE Laurentia which may have been triggered by asthenospheric thinning due to plume-induced extension of lower-plate Rae craton at 1.95–1.92 Ga. Our data refute a direct link between the Prøven Igneous Complex and the voluminous 1.86–1.845 Ga Cumberland Batholith, Baffin Island, long considered its counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号