首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The warming over the Tibetan Plateau(TP) is very significant during last 30 years,but the thermal forcing has been weakened.The thermal weakening is attributed mainly to the enhancement of the TOA(top of atmosphere) outgoing radiation.This enhancement is opposite to the greenhouse-gas-induced weakening of the global mean TOA outgoing radiation and is also unable to be explained by the observed decrease of total cloud cover.This study presents the importance of cloud height change and the warming over the TP in modulating the TOA radiation budget and thus the thermal forcing during spring and summer.On the basis of surface observations and satellite radiation data,we found that both the TOA outgoing shortwave radiation and longwave radiation were enhanced during this period.The former enhancement is due mainly to the increase of low-level cloud cover,which has a strong reflection to shortwave radiation,especially in summer.The latter enhancement is caused mainly by the planetary warming,and it is further enhanced by the decrease of total cloud cover in spring,as clouds extinguish outgoing longwave radiation emitted from the land surface.Therefore,the radiative cooling enhancement and thus the thermal weakening over the TP is a response of the earth-atmosphere system to the unique change of cloud cover configuration and the rapid warming of the land surface.However,these trends in cloud cover and TOA outgoing radiation are not well represented in four reanalyses.  相似文献   

2.
FY-3气象卫星上搭载的紫外臭氧总量探测仪TOU是我国自主开发研制的首台用于全球臭氧总量定量测量的探测仪,自发射以来已成功在轨运行近两年.由于TOU发射前辐亮度定标存在偏差,为了得到高精度的产品,TOU必须进行在轨定标.本文介绍了基于辐射传输模式计算对TOU辐亮度进行在轨道定标的方法,定标过程中用于模拟辐亮度计算的臭氧总量由与TOU观测时刻相近的国外臭氧总量探测仪器MetOp/GOME-2提供.文章将在轨定标后TOU的反演结果与AURA/OMI以及地基的产品进行比较,结果表明,用辐射传输模式对TOU辐亮度进行在轨定标的方法是可行的,反演结果能够真实地反映臭氧的时空分布特性,在全球部分地基观测站所处的位置上对TOU, OMI以及地基的臭氧总量进行比较的结果表明,TOU与OMI的相对偏差均方根约为2.52%,TOU与地基以及OMI与地基观测结果之间的相对偏差均方根分别为4.45%和3.89%.  相似文献   

3.
Several authors have suggested that a link exists between the flux of galactic cosmic rays (GCR) and cloudiness. Here we review the evidence for such a connection from studies of cloud factors using both satellite and ground-based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud-cosmic ray flux correlation indicated by satellite data. Sunshine and synoptic cloud records both indicate that the global total cloud cover has increased during the past century. This increase in total cloud cover argues against a dominating role by solar activity (via GCR) over cloud formation on centennial time scales. Either the predicted low cloud decrease has not occurred or the medium-high level cloud has increased to a greater extent than low cloud has decreased.As there is no accurate long term data available on low cloud behaviour during the last century, we are not able to totally dismiss the link between GCR and cloudiness, but we list a number of arguments for and against the proposed cosmic ray-cloud connection.  相似文献   

4.
Galactic cosmic rays (GCR) have been suggested as a possible contributory mechanism to cloud formation. If these are significant then, in addition to the similarity between long-term (years) changes in GCR and cloud cover, there should also be a similarity over shorter (days) time scales. This paper reports an analysis of changes in global cloud cover and GCR recorded at 3 hourly intervals over 22 years. There is a significant correlation between short-term changes in low cloud cover over northern and southern hemispheres, consistent with about 3% of the variation arising from common factors. However, GCR is not a major factor responsible for cloud cover changes. There is an association between short-term changes in low cloud cover and galactic cosmic radiation over a period of several days. This could arise if approximately 3% of the variations in cloud cover resulted from GCR.  相似文献   

5.
Erythemal ultraviolet (UVER; 280–400 nm) and total shortwave (SW; 305–2800 nm) solar irradiances were recorded from 2000 to 2009 in Valladolid, Spain. UVER and SW values under cloudless conditions are simulated by radiative transfer (TUV 4.6) and empirical models. These model estimations are tested with experimental measurements showing a great agreement (root mean square error around 7%). The aerosol effect on UVER irradiance is determined through a model study. UVER radiation and total ozone column (TOC) temporal evolutions show a negative relationship. TOC accounts for 80% of UVER variance and its radiation amplification factor is 1.1 at zenith of 65°. Cloud effects on solar radiation are shown and quantified by the cloud modification factor. Moreover the enhancement effect cases are analysed. SW radiation proves more sensitive to clouds than UVER. Clouds are seen to attenuate and enhance solar radiation by up to 93% and 22% in the UVER range, respectively.  相似文献   

6.
The evolution of a precipitating convective cloud was studied by a time-dependent numerical model in which for the simplification of dynamical framework the domain under consideration was expressed by three regions: inner region of cloud, outer region of cloud and environmental region. Clouds are assumed to have no ice-phase. The size distribution of water drops is described using five size-groups. Two types of cloud droplets (case A and case B) were given at cloud base. There are more small cloud droplets in case B than in case A. The slower production of raindrops in case B results in the later formation of a downdraft and rainfall than in case A. In consequence rainfall efficiency is lower in case B. These differences of both cases had a tendency to be larger in a less unstable atmosphere.  相似文献   

7.
Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m) have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m−2 for the conditions of that Landsat picture (solar zenith angle 65○, cloud cover 70%); it might reach 40 W m−2 for an overhead sun and overcast cloud conditions.  相似文献   

8.
This paper highlights how the emerging record of satellite observations from the Earth Observation System (EOS) and A-Train constellation are advancing our ability to more completely document and understand the underlying processes associated with variations in the Earth’s top-of-atmosphere (TOA) radiation budget. Large-scale TOA radiation changes during the past decade are observed to be within 0.5?Wm?2 per decade based upon comparisons between Clouds and the Earth’s Radiant Energy System (CERES) instruments aboard Terra and Aqua and other instruments. Tropical variations in emitted outgoing longwave (LW) radiation are found to closely track changes in the El Ni?o-Southern Oscillation (ENSO). During positive ENSO phase (El Ni?o), outgoing LW radiation increases, and decreases during the negative ENSO phase (La Ni?a). The coldest year during the last decade occurred in 2008, during which strong La Nina conditions persisted throughout most of the year. Atmospheric Infrared Sounder (AIRS) observations show that the lower temperatures extended throughout much of the troposphere for several months, resulting in a reduction in outgoing LW radiation and an increase in net incoming radiation. At the global scale, outgoing LW flux anomalies are partially compensated for by decreases in midlatitude cloud fraction and cloud height, as observed by Moderate Resolution Imaging Spectrometer and Multi-angle Imaging SpectroRadiometer, respectively. CERES data show that clouds have a net radiative warming influence during La Ni?a conditions and a net cooling influence during El Ni?o, but the magnitude of the anomalies varies greatly from one ENSO event to another. Regional cloud-radiation variations among several Terra and A-Train instruments show consistent patterns and exhibit marked fluctuations at monthly timescales in response to tropical atmosphere-ocean dynamical processes associated with ENSO and Madden–Julian Oscillation.  相似文献   

9.
The relationship between point cloudiness and sunshine derived cloud cover in India is investigated using data collected from 33 stations. It has been found that point cloudiness, in general, overestimates sunshine derived cloud cover. The latitudinal dependence of the overestimation is discussed. The significance of the precise quantification of cloudiness in radiation budget studies is briefly mentioned.  相似文献   

10.
The effects of cloud shadowing, channelling, cloud side illumination and droplet concentration are investigated with regard to the reflection of shortwave solar radiation. Using simple geometric clouds, coupled with a Monte Carlo model the transmission properties of idealized cloud layers are found. The clouds are illuminated with direct solar radiation from above. The main conclusion reached is that the distribution of the cloud has a very large influence on the reflectivity of a cloud layer. In particular, if the cloud contains vertical gaps through the cloud layer in which the liquid water content is zero, then, smaller more numerous gaps are more influential on the radiation than fewer, larger gaps with equal cloud fraction. At very low solar zenith angles channelling of the radiation reduces the reflection expected on the basis of the percentage cloud cover. At high solar zenith angles the illumination of the cloud edges significantly increases the reflection despite the shadowing of one cloud by another when the width of the gaps is small. The impact of droplet concentration upon the reflection of cloud layers is also investigated. It is found that at low solar zenith angles where channelling is important, the lower concentrations increase the transmission. Conversely, when cloud edge illumination is dominant the cloud distribution is found to be more important for the higher concentrations.  相似文献   

11.
Summary The equation of the planetary radiation balance of the Earth is derived and discussed. The changes of the temperature of the Earth due to the change in the cloud cover, the cloud albedo and the Earth's surface albedo are analysed in detail.  相似文献   

12.
Taking northern Xinjiang, China, as an example, this study first compares the standard MODIS Terra and Aqua snow cover classifications, and then compares the accuracy of the standard MODIS daily and 8‐day snow cover products with the new daily and multi‐day snow cover combination of MODIS Terra and Aqua observations using in situ measurements. Under clear sky in both products, the agreement of land classification from MODIS Terra and Aqua daily and 8‐day snow cover products is close to 100% for a entire water year. In contrast, the agreement of snow classification from MODIS Terra and Aqua is high only in the winter months, decreasing in the rest of the period. The high agreement mainly concentrates in land or snow‐dominated areas, and major disagreements take place in the transitions zones from snow to land. The disagreement (mainly snow–land) in the 8‐day products is higher than that in the daily products. In addition, both MODIS Terra and Aqua cloud masks tend to map more areas in the transition zones as cloud. Under clear sky conditions, the three daily products have similar accuracy of snow and land classification, and the 8‐day standard products and the multi‐day combination product also have similar accuracy of snow and land classification. This further suggests that the algorithm in the combination of Terra and Aqua snow cover products is valid. Moreover, in the actual weather/cloud conditions, the combination products from Terra and Aqua reduce cloud blockage and improve snow classification accuracy against either MODIS Terra or Aqua (51% against 44% and 34% for daily and 92% against 87% and 78% for 8‐day, respectively), although Terra snow product (daily or 8‐day) has slightly better accuracy than the Aqua snow product. The new combination products can provide better mapping of spatiotemporal variation of snow cover/glacier and for snow‐melting modeling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Factors affecting UV radiation at the earth’s surface include the solar zenith angle, earth–sun distance, clouds, aerosols, altitude, ozone and the ground’s albedo. The variation of some factors, such as solar zenith angle and earth–sun distance, is well established. Total column ozone and UV radiation are inversely related, but the presence of clouds may affect the resulting UV in such a way that a depletion in the total column ozone may not always lead to an increase in the radiation at the earth’s surface. The aim of this paper is to determine the contribution to the variation of the biologically effective irradiance by geometric factors, clouds and ozone, jointly and separately, in Ushuaia (54°49′S, 68°19′W, sea level), and the seasonal variation of this relationship, given the magnitude and seasonal distribution of the ozone depletion and the frequent presence of high cloud cover in this site. For this purpose, multivariate and simple regression analyses of daily and monthly integrated irradiances weighted by the DNA damage action spectrum as a function of total column ozone and the integrated irradiances in the band 337–342 nm (as a proxy for cloud cover and geometric factors) have been performed. For the analysed period (September 1989–December 1996) more than 97% of the variation of the DNA damage weighted daily integrated irradiances is described by changes in ozone, clouds and geometric factors. Simple regression analysis for daily integrated irradiances, grouped by month, shows that most of this variation is explained by clouds and geometric factors, except in spring, when strong ozone depletion occurs intermittently over this area. When monthly trends are removed, similar results are observed, except for late winter.  相似文献   

14.
The clouds of the middle troposphere span the temperature range where both ice and liquid water in a supercooled state can exist. However, because one phase tends to dominate, of the two midlevel cloud types, altostratus are deep ice-dominated, while altocumulus are shallow water-dominated, mixed-phase clouds with ice crystal virga typically trailing below. Multiple remote sensor examples of these cloud types are given to illustrate their main features, and the radiative consequences of the different cloud microphysical compositions are discussed. Spaceborne radar and lidar measurements using the CloudSat and CALIPSO satellites are analyzed to determine the global distributions of cloud frequencies and heights of these clouds. It is found that together these little-studied clouds cover ~25% of the Earth’s surface, which is about one-third of the total cloud cover, and thus represent a significant contribution to the planet’s energy balance.  相似文献   

15.
The effect of cloud feedback on the response of a radiative-convective model to a change in cloud model parameters, atmospheric CO2 concentration, and solar constant has been studied using two different parameterization schemes. The method for simulating the vertical distribution of both cloud cover and cloud optical thickness, which depends on the relative humidity and on the saturation mixing ratio of water vapor, respectively, is the same in both approaches, but the schemes differ with respect to modeling the water vapor profile. In scheme I atmospheric water vapor is coupled to surface parameters, while in scheme II an explicit balance equation for water vapor in the individual atmospheric layers is used. For both models the combined effect of feedbacks due to variations in lapse rate, cloud cover, and cloud optical thickness results in different relationships between changes in surface temperature, planetary temperature, and cloud cover. Specifically, for a CO2 doubling and a 2% increase in solar constant, in both models the surface warming is reduced by cloud feedback, in contrast to no feedback, with the greater reduction in scheme I as compared to that of scheme II.  相似文献   

16.
Clouds affect local surface UV irradiance, even if the horizontal distance from the radiation observation site amounts to several kilometers. In order to investigate this effect, which we call remote clouds effect, a 3-dimensional radiative transfer model is applied. Assuming the atmosphere is subdivided into a quadratic based sector and its surrounding, we quantify the influence of changing cloud coverage within this surrounding from 0% to 100% on surface UV irradiance at the sector center. To work out this remote clouds influence as a function of sector base size, we made some calculations for different sizes between 10 km × 10 km and 100 km × 100 km. It appears that in the case of small sectors (base size 20 km × 20 km) the remote clouds effect is highly variable: Depending on cloud structure, solar zenith angle and wavelength, the surface UV irradiance may be enhanced up to 15% as well as reduced by more than 50%. In contrast, for larger sectors it is always the case that enhancements become smaller by 5% if sector base size exceeds 60 km × 60 km. However, these values are upper estimates of the remote cloud effects and they are found only for special cloud structures. Since these structures might occur but cannot be regarded as typical, different satellite observed cloud formations (horizontal resolution about 1 km × 1 km) have also been investigated. For these more common cloud distributions we find remote cloud effects to be distinctly smaller than the corresponding upper estimates, e.g., for a sector with base size of 25 km × 25 km the surface UV irradiance error due to ignoring the actual remote clouds and replacing their influence with periodic horizontal boundary conditions is less than 3%, whereas the upper estimate of remote clouds effect would suggest an error close to 10%.  相似文献   

17.
Snow cover depletion curves are required for several water management applications of snow hydrology and are often difficult to obtain automatically using optical remote sensing data owing to both frequent cloud cover and temporary snow cover. This study develops a methodology to produce accurate snow cover depletion curves automatically using high temporal resolution optical remote sensing data (e.g. Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS or National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)) by snow cover change trajectory analysis. The method consists of four major steps. The first is to reclassify both cloud‐obscured land and snow into more distinct subclasses and to determine their snow cover status (seasonal snow cover or not) based on the snow cover change trajectories over the whole snowmelt season. The second step is to derive rules based on the analysis of snow cover change trajectories. These rules are subsequently used to determine for a given date, the snow cover status of a pixel based on snow cover maps from the beginning of the snowmelt season to that given date. The third step is to apply a decision‐tree‐like processing flow based on these rules to determine the snow cover status of a pixel for a given date and to create daily seasonal snow cover maps. The final step is to produce snow cover depletion curves using these maps. A case study using this method based on Terra MODIS snow cover map products (MOD10A1) was conducted in the lower and middle reaches of the Kaidu River Watershed (19 000 km2) in the Chinese Tien Shan, Xinjiang Uygur Autonomous Region, China. High resolution remote sensing data (charge coupled device (CCD) camera data with 19·5 m resolution of the China and Brazil Environmental and Resources Satellite (CBERS) data (19·5 m resolution), and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 15 m resolution of the Terra) were used to validate the results. The study shows that the seasonal snow cover classification was consistent with that determined using a high spatial resolution dataset, with an accuracy of 87–91%. The snow cover depletion curves clearly reflected the impact of the variation of temperature and the appearance of temporary snow cover on seasonal snow cover. The findings from this case study suggest that the approach is successful in generating accurate snow cover depletion curves automatically under conditions of frequent cloud cover and temporary snow cover using high temporal resolution optical remote sensing data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Statistically significant (at the 95% significance level) changes in daily cloud cover are found to occur globally over land coincident with extreme increases in ‘fair-weather’ measurements of vertical electric field (Ez) measured at Vostok, Antarctica. Using global cloud products from the International Satellite Cloud Climatology Project (ISCCP) D1 data series, superposed epoch analyses were made of both increases and decreases in Ez. Field significance testing revealed that, both before and after extreme increases in Ez, significant absolute cloud cover changes (of 13–15%) occur in the tropics and high latitudes. While the linkages in the tropics may reflect changes in the main convective cloud generators of current flow in the global circuit, the linkages at high latitudes appear to represent responses of clouds to the current flow. This linkage offers a possible explanation of a possible solar–terrestrial climate amplification mechanism.  相似文献   

19.
Recent studies have provided new evidence that models may systematically underestimate cloud solar absorption compared to observations. This study extends previous work on this “absorption anomaly” by using observational data together with solar radiative transfer parameterisations to calculate fs (the ratio of surface and top of the atmosphere net cloud forcings) and its latitudinal variation for a range of cloud types. Principally, it is found that (a) the zonal mean behaviour of fs varies substantially with cloud type, with the highest values obtained for low clouds; (b) gaseous absorption and scattering can radically alter the pattern of the variation of fs with latitude, but gaseous effects cannot in general raise fs to the level of around 1.5 as recently determined; (c) the importance of the gaseous contribution to the atmospheric ASR is such that whilst fs rises with surface albedo, the net cloud contribution to the atmospheric ASR falls; (d) the assumed form of the degree of cloud overlap in the model can substantially affect the cloud contribution to the atmospheric ASR whilst leaving the parameter fs largely unaffected; (e) even large uncertainties in the observed optical depths alone cannot account for discrepancies apparent between modelled and newly observed cloud solar absorption. It is concluded that the main source of the anomaly may derive from the considerable uncertainties regarding impure droplet microphysics rather than, or together with, uncertainties in macroscopic quantities. Further, variable surface albedos and gaseous effects may limit the use of contemporaneous satellite and ground-based measurements to infer the cloud solar absorption from the parameter fs.  相似文献   

20.
Letu  Husi  Shi  Jiancheng  Li  Ming  Wang  Tianxing  Shang  Huazhe  Lei  Yonghui  Ji  Dabin  Wen  Jianguang  Yang  Kun  Chen  Liangfu 《中国科学:地球科学(英文版)》2020,63(6):774-789
The estimation of downward surface shortwave radiation(DSSR) is important for the Earth's energy budget and climate change studies. This review was organised from the perspectives of satellite sensors, algorithms and future trends,retrospects and summaries of the satellite-based retrieval methods of DSSR that have been developed over the past 10 years. The shortwave radiation reaching the Earth's surface is affected by both atmospheric and land surface parameters. In recent years,studies have given detailed considerations to the factors which affect DSSR. It is important to improve the retrieval accuracy of cloud microphysical parameters and aerosols and to reduce the uncertainties caused by complex topographies and high-albedo surfaces(such as snow-covered areas) on DSSR estimation. This review classified DSSR retrieval methods into four categories:empirical, parameterisation, look-up table and machine-learning methods, and evaluated their advantages, disadvantages and accuracy. Further efforts are needed to improve the calculation accuracy of atmospheric parameters such as cloud, haze, water vapor and other land surface parameters such as albedo of complex terrain and bright surface, organically combine machine learning and other methods, use the new-generation geostationary satellite and polar orbit satellite data to produce highresolution DSSR products, and promote the application of radiation products in hydrological and climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号