首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
崂山湾潮间带食物网结构的碳稳定同位素初步研究   总被引:14,自引:3,他引:14  
通过对1993年8月和1994年2和5月在崂山湾潮间带采集的底栖生物碳稳定同位素组成(δ13C值)的分析,发现该区底栖动物的主要食物来源以δ13C值大致可划分为4类:水体中的颗粒有机质(POM)、底栖硅藻、大型底栖藻类和底泥中的有机物质(SOM).研究结果表明,底栖动物的碳稳定同位素组成与其所摄食的食物的碳稳定同位素组成有密切的关系,因此,底栖动物的碳稳定同位素组成可以用于研究其食物来源.碳稳定同位素数据证实,双壳类等滤食性动物的食物来源主要是POM;甲壳动物的δ13C值的范围较大,证明其食物来源的多样性;底栖硅藻是多数腹足类食物来源的相当重要组成部分.用碳稳定同位素示踪剂对该区底栖-水体耦合作用的初步研究表明,水体中的POM是底栖动物的重要食物来源,但底泥中有机质和底栖硅藻也是许多底栖动物食物来源的相当重要的组成部分.  相似文献   

2.
By analyses of carbon isotopic composition(δ13C values) of the benthos collected in the Laoshan Bay in August 1993 and February and May 1994, it is found that the main food sources of the benthos can be divided into four groups in terms of carbon isotope composition: Particulate Organic Matter (POM),benthic diatoms, benthic macroalgae and the organic matter in sediments.The results show that the carbon isotopic composition of the benthic animals has a close relation with that of the food they take in.The carbon isotopic compositions of benthos may be useful in elucidating their food sources.The carbon isotopic data have confirmed that POM is the main food source of the benthic filter feeders such as bivalves; crustaceans have a wide range of δ13C values, showing their food source has diversity; benthic diatoms are an important fraction of the food for most of gastropods.A preliminary investigation of the benthic-pelagic coupling in that region using the stable carbon isotopic tracers has confirmed the importance of POM as a food source for benthos in this region,but the organic matter in sediments and benthic diatoms are also relatively important for a lot of benthic animals.The benthic-pelagic coupling in the Laoshan Bay temperate ecosystem is not so tight as that in ecosystems at higher latitudes such as north-eastern water polynya.  相似文献   

3.
Organic matter quality, expressed as the proportion of chlorophyll a (Chl a) to degraded organic material (i.e. phaeopigments), is known to influence the structure of benthic associations and plays an important role in the functioning of the ecosystem. This study investigates the vertical distribution of microbial biomass, meiofauna and macrofauna with respect to organic matter variation in Ubatuba, Brazil, a southeastern, subtropical coastal area. On three occasions, samples were collected in exposed and sheltered stations, at high and low hydrodynamic conditions. We hypothesize that benthic assemblages will have high meio‐ and macrofaunal densities and high microbial biomass at the sediment surface at the sheltered site, and lower and vertically homogeneous microbial biomass and densities of meio‐ and macrofauna are expected at the exposed site. The accumulation of fresh organic matter at the sediment surface was observed at both stations over the three sampling dates, which contributed to the higher densities of meiofauna in the first layers of the sediment column. Macrofauna followed the same trend only at the exposed station, but changes in the number of species, biodiversity and feeding groups were registered for both stations. Microbial biomass increased at the sheltered station over the three sampling dates, whereas at the exposed station, microbial biomass was nearly constant. Physical exposure did not influence organic matter loading at the sites and therefore did not affect overall structure of benthic assemblages, which negates our original hypothesis. Most of the benthic system components reacted to organic matter quality and quantity, but relationships between different‐sized organisms (i.e. competition and/or predation) may explain the unchanged microbial profiles at the exposed site and homogeneous vertical distribution of macrofauna at the sheltered site. In conclusion, the high quality of organic matter was a crucial factor in sustaining and regulating the benthic system, but coupled results showed that interactions between micro‐, meio‐ and macrofauna can be highly complex.  相似文献   

4.
This study demonstrated the spatiotemporal patterns of the environmental conditions and benthic macrofauna in Tokyo Bay, Japan, and investigated the factors causing disturbances in the assemblage structure. In the north-central areas, the density and species diversity of the macrobenthos was low. Although hypoxia appeared in July, defaunation occurred in August. The delayed defaunation and recolonization soon after the abatement of hypoxia were attributed to several polychaete and bivalve species that were tolerant to the hypoxic environment. In the southeastern areas, however, the density and species diversity of the macrobenthos was high throughout the year, and no defaunation was recorded. Multivariate analyses showed that the disturbance in the macrofauna correlated with organic enrichment in the sediment and bottom-water hypoxia. There is a concern about further impairment of the macrofauna in the bay due to the expansion of sediment with high levels of organic matter towards the southern regions that could cause hypoxia and subsequent defaunation.  相似文献   

5.
水层-底栖耦合生态动力学研究的某些进展   总被引:6,自引:3,他引:6  
概述浅海生态系的水层系统与底栖系统耦合的基本原理,着重介绍有机质沉降动力学、底栖生态系统对有机质的响应、生物沉降和侧向平流、生物扰动和沉积物再悬浮研究的进展,结语中提出应予优先支持研究的科学问题。  相似文献   

6.
Benthic fluxes of O2, titration alkalinity (TA), total inorganic carbon (TIC), Ca2+, NO3, NH4+, PO43−, and Si(OH)4 were measured by in situ benthic flux chamber incubations at 13 locations on the North Carolina continental slope. The majority of measurements were made at water depths of approximately 700–850 m, in the previously identified upper slope depocenter. This region is characterized by extremely high organic matter deposition rates and near saturation bottom water oxygen concentrations. Measured benthic fluxes of TA are reasonably correlated with O2 benthic fluxes. Because bottom waters are supersaturated with respect to calcite and aragonite at these shallow water depths, these results demonstrate the importance of metabolically driven dissolution in this region. Subtraction of the calcium carbonate dissolution contributions from the TIC benthic fluxes suggests rates of organic matter remineralization ranging from 0.97 to 3.9 mol C m−2 yr−1 at the depocenter sites, a factor of 3–10 greater than estimated for the adjacent continental rise and upper slope areas. Because biological primary production in the overlying waters does not follow this pattern, these extremely high values are most likely supported by lateral inputs of highly reactive organic matter. Mass balance calculations indicate that despite the oxygenated bottom water conditions, 68% of the organic nitrogen released during organic matter remineralization processes is ultimately denitrified. The release of PO43− from the depocenter sediments is equivalent to or larger than that predicted from the remineralization of Redfield organic matter. This implies either that PO43− is preferentially released in this setting and that the accumulating sediments must be depleted in PO43− relative to organic carbon or that another, non-organic, phase is contributing PO43− to the system. The molar ratio of the Si benthic flux and organic carbon remineralization rate ranges from 0.30 to 0.86. This is significantly greater than the ratio reported for most pelagic diatoms. Possible reasons for this high ratio include the deposition of benthic diatoms that may have a larger Si : C ratio than pelagic diatoms, the near-bottom lateral input of partially reworked organic matter that may have an elevated Si : C ratio relative to fresh diatoms, preferential loss of carbon in sinking particulates or the release of Si from non-opaline materials.  相似文献   

7.
渤海湾曹妃甸围填海工程对大型底栖动物群落的影响   总被引:2,自引:0,他引:2  
为研究渤海湾围填海工程对附近海域大型底栖动物群落的影响,利用2013年秋季和2014年春季调查数据,对渤海湾附近海域大型底栖动物群落的物种数、总平均丰度、总平均生物量和生物多样性指数进行分析。结果发现,调查区域的优势类群为多毛类,优势种为凸壳肌蛤(Musculus senhousia)和日本倍棘蛇尾(Amphioplus japonicas),这与渤海湾大型底栖动物群落优势种单一和物种小型化的特征相符。曹妃甸围填海海域与邻近海域的大型底栖动物群落物种数、丰度、生物量和多样性指数均没有显著差异。2014年春季较2013年秋季的大型底栖动物群落多样性稍有所提高,这可能是围填海工程放缓和阶段性施工结束后生物群落在缓慢的恢复。ABC曲线(Abundance/Biomass Curves)分析表明渤海湾大型底栖动物群落均已受到中等程度干扰;M-AMBI指数分析发现曹妃甸围填海区大型底栖动物群落健康状况较差。结合渤海湾围填海面积和历史数据,发现围填海等人类活动已对渤海湾生态环境和大型底栖动物群落造成了不同程度的影响,导致该区域的生态系统受损。受损生态系统的完全恢复需要漫长的过程,受损大型底栖动物群落的次生演替也需要较长的时间,短时间内不会有明显的改善。  相似文献   

8.
Abstract. The changes in the concentrations of silicate, phosphate, and inorganic nitrogen in Eiefsis Bay. an intermittently anoxic basin, arc described and related to the changes in the physical properties of the water. Winter convection resulted in a very small vertical gradient of temperature, salinity, oxygen, and nutrients. Stratification started to develop in May and persisted for about 6 months. High values of silicate, phosphate, and ammonia occurred during the anoxic conditions prevailing in summer. The vertical transport of particulate organic matter and decomposition of abundant pelagic and benthic organic matter during the summer produced a low oxygen level in the bottom layer below the pycnoclinc. A high sea water temperature and vertical stability contributed to the development of anoxic conditions during the summer in the near bottom layer and to mass mortality of benthic macrofauna. Also the Eiefsis Bay anoxia appears to have had significant ecological effects on many other marine species, including several of economic importance.  相似文献   

9.
为研究钦州湾大型底栖动物的生态特征,探讨影响大型底栖动物分布的主要因素,于2011年5月在钦州湾进行大型底栖动物调查,并同步采集沉积物样品,进行理化性质分析。使用Surfer软件绘制各群落特征指数的平面分布图,用SPSS软件分析群落特征指数与沉积物环境因子之间的关联性。共采集到大型底栖动物种类55种。平均生物量为105.48 g/m2,平均密度为50ind/m2。香农-维纳指数(H')、种类均匀度指数(J')和丰富度指数(D)的平均值分别为1.44,0.63和0.64。群落特征指数与沉积物环境因子之间的相关性分析结果显示,密度与Cu,Pb,Zn,Cd,Cr,Hg以及有机碳呈显著负相关;种类数与所分析的10项沉积物环境因子之间均呈显著负相关;均匀度指数与Hg和有机碳呈显著负相关;丰富度指数与硫化物呈显著负相关;生物量和香农-威纳指数与沉积物各环境因子之间均没有显著的相关性。  相似文献   

10.
Sediment and water column data from four sites in North, Central and South San Francisco Bays were collected monthly from November 1999 through November 2001 to investigate the seasonal variation of benthic organic matter and chlorophyll in channel sediments, the composition and quality of sediment organic matter (SOM), and the relationship between seasonal patterns in benthic organic matter and patterns in water column chlorophyll. Water column chlorophyll peaked in the spring of 2000 and 2001, characteristic of other studies of San Francisco Bay phytoplankton dynamics, however an unusual chlorophyll peak occurred in fall 2000. Cross-correlation analysis revealed that water column chlorophyll at these four channel sites lead sediment parameters by an average of 2 to 3 months. Sediment organic matter levels in the San Francisco Bay channel showed seasonal cycles that followed patterns of water column production: peaks in water column chlorophyll were followed by later peaks in sediment chlorophyll and organic matter. Cyclical, seasonal variations also occurred in sediment organic matter parameters with sediment total organic carbon (TOC) and total nitrogen (TN) being highest in spring and lowest in winter, and sediment amino acids being highest in spring and summer and lowest in winter. Sediment chlorophyll, total organic carbon, and nitrogen were generally positively correlated with each other. Sediment organic matter levels were lowest in North Bay, intermediate in Central Bay, and highest in South Bay. C:N ratio and the ratio of enzyme hydrolyzable amino acids to TOC (EHAA:TOC) data suggest that SOM quality is more labile in Central and northern South Bay, and more refractory in North Bay and southern South Bay.  相似文献   

11.
The stage of benthic re-colonization at a site formed by sand extraction was investigated some 10 years after the cessation of dredging. The examined post-dredging pit is one of five deep (up to 14 m) pits created with a static suction hopper on the sandy, flat and shallow (1–2 m) part of the inner Puck Bay (the southern Baltic Sea). The topography of the dredged area makes a specific trap for different kinds of organic matter. It is created by the small areas of post-dredging pits as compared to their depths. As a result, organic matter accumulation leads to anaerobic conditions and hydrogen sulfide formation. Macrofauna was not found to occur permanently in the deepest part (11 m) of the cup-shaped depression, which was characterized by its small area (0.2 km2) and steep walls. However, permanent occurrence of meiofauna (max. 180 ind. 10 cm−2, mainly Nematoda) was noted. Undoubtedly, re-colonization of benthic fauna assemblages, typical of shallow and sandy seabed of the Puck Bay, will not follow in a natural way in the area of post-dredging pits. Also, it could not be expected that the re-colonization sequence would result in the formation of a structure similar to that of the natural depression (the Kuźnica Hollow).  相似文献   

12.
The vertical distribution of macrobenthic fauna, heavy metals, and other physico‐chemical and biological characteristics of the sediments were studied in three sediment layers (0–7, 8–14, 15–21 cm) at seven stations in the Ubatuba region, north coast of São Paulo State, Brazil at several temporal and spatial scales. Six stations were located in the inner bay near the riverine run‐off, and one was outside the bay, distant from the riverine influence. The samples were collected four times in 1 year, on a seasonal basis. Sediments were basis comprised predominantly of very fine sand and the vertical distribution of grain size was uniform to a depth of 21 cm in all stations. Higher values of total organic matter, organic carbon, sulphur, heavy metals and phaeopigments were recorded at the inner Ubatuba Bay stations, probably due to the riverine influence. C/N ratios indicated a mixed origin of organic matter with a major contribution of terrestrial material in the inner stations. The vertical distribution of heavy metals showed a slight decline with sediment depth in the inner stations, indicating the present contribution. Most of the macrofauna was found at the surface sediment layer. Biological data showed that in the inner stations of Ubatuba Bay, which are under the influence of urban sewage and are moderately polluted, the fauna was distributed more superficially within the substrate than in St. 7, which is located in the external portion of the bay distant from sewage inputs. The environmental quality of the sites studied varied little throughout the year, at least in relation to the variables considered here. Temporal variation in the vertical distribution of benthic fauna was not evident in the four sampling surveys analysed. Only minor changes in the vertical distribution of the total fauna were detected in the seasonal scale, with the organisms located less deep within the sediment column in summer, indicating some influence of the tourism impact and/or rainy season.  相似文献   

13.
Dissolved organic matter (DOM) composition and dynamics in temperate shallow coastal bays are not well described although these bays may be important as local sources of organic carbon to ocean waters and are often sites of economically-important fisheries and aquaculture. In this study surface water samples were collected on a monthly to bi-monthly basis over two years from a mid-Atlantic coastal bay (Chincoteague Bay, Virginia and Maryland, USA). Dissolved organic carbon (DOC) concentrations and light absorbance characteristics were measured on sterile-filtered water, and high-molecular weight (> 1 kDa) dissolved OM (DOM) was isolated to determine stable isotope composition and molecular-level characteristics. Our time series encompassed both a drought year (2002) and a year of above-average rainfall (2003). During the dry year, one of our sites developed a very intense bloom of the brown tide organism Aureococcus anophagefferens while during the wet year there were brown tide bloom events at both of our sampling sites. During early spring of the wet year, there were higher concentrations of > 1 kDa DOC; this fraction represented a larger proportion of overall DOC and appeared considerably more allochthonous. Based upon colored dissolved organic matter (CDOM) and high-molecular weight DOM analyses, the development of extensive phytoplankton blooms during our sampling period significantly altered the quality of the DOM. Throughout both years Chincoteague Bay had high DOC concentrations relative to values reported for the coastal ocean. This observation, in conjunction with the observed effects of phytoplankton blooms on DOM composition, indicates that Chincoteague Bay may be a significant local source of “recently-fixed” organic carbon to shelf waters. Estimating inputs of DOC from Chincoteague Bay to the Mid-Atlantic Bight suggests that shallow productive bays should be considered in studies of organic carbon on continental shelves.  相似文献   

14.
1985年5—6月对黄河口及其邻近海域的27个站进行了大型底栖动物的首航次定量调查。分别对18种环境因子和68个优势种和习见种所做的聚类分析显示了黄河口水下三角洲与邻近海域的某些差异,并联系沉积环境将所研究海域划分为四个区:黄河口水下三角洲、莱州湾、渤海中部和渤海湾东部。对大型底栖动物与沉积速率的关系也做了初步探讨。  相似文献   

15.
Aquaculture of bluefin tuna in Mediterranean coastal waters has generated growing concern about the negative environmental effects. In the present isotopic study we examined the dispersal and fate of organic matter derived from a Mediterranean tuna farm in the surrounding environment. An overall enrichment in the heavy nitrogen isotope was found in the feed and in farmed tunas, indicating the input of isotopically traceable organic matter in the system. Waste was clearly traceable in the water column up to 1000 m from the cages, while only slight accumulation occurred in the sediment just below the cages. Waste was isotopically shown also to contribute to the diet of demersal and benthopelagic wild fish collected around the cages. As a result, waste undertook multiple pathways. In the water column its was diluted and dispersed due to hydrodynamism, which prevented great accumulation of aquaculture-derived organic matter in sediments. In addition, biological constraints such as benthopelagic and demersal fish further prevented organic matter accumulation through the benthic trophic route.  相似文献   

16.
Coastal and estuarine nursery grounds are essential habitats for sustaining flatfish stocks since only these shallow and productive areas provide the high food supply that allows maximizing juvenile growth and survival in most flatfish species. However, the main organic matter sources at the basis of benthic food webs might differ drastically between estuarine nursery grounds under strong freshwater influences, where food webs are mainly supported by continental organic matter, and coastal ecosystems under limited freshwater influence, where the local marine primary production is the main source of carbon for the benthos. To better understand the links between continental inputs to the coastal zone and stock maintenance in the highly prized common sole, Solea solea (L.), we investigated the variability in the organic matter sources supporting the growth of its young-of-the-year (YoY) in five contrasted estuarine and coastal nursery grounds under varying freshwater influence. Stable isotopes of carbon and nitrogen allowed tracing the origin of the organic matter exploited by YoY soles in the very first months following their benthic settlement, i.e. when most of the juvenile mortality occurs in the species. A mixing model was run to unravel and quantify the contribution of all major potential sources of organic matter to sole food webs, with a sensitivity analysis allowing assessment of the impact of various trophic enrichment factors on model outputs. This meta-analysis demonstrated a relative robustness of the estimation of the respective contributions of the various organic matter sources. At the nursery scale, the upstream increase in freshwater organic matter exploitation by YoY soles and its positive correlation with inter-annual variations in the river flow confirmed previous conclusions about the importance of organic matter from continental origin for juvenile production. However, inter-site differences in the organic matter sources exploited for growth showed that, although freshwater organic matter use is significant in all nursery sites, it is never dominant, with especially high contributions of local primary production by microphytobenthos or saltmarsh macrophytes to juvenile sole growth in tidal nursery ecosystems. These patterns stress the need for maintaining both the intensity of freshwater inputs to the coastal zone and of local autochthonous primary production (especially that of the intertidal microphytobenthos) to preserve the nursery function of coastal and estuarine ecosystems.  相似文献   

17.
A study on biogeochemical cycling in the west coastal Bay of Bengal was undertaken during the peak discharge period to understand the influence of enhanced stratification and primary production on the possible intensification of the oxygen minimum zone (OMZ). Our study reveals that oxygen concentrations were below the detection limits in the northwestern (NW) coastal Bay of Bengal between 100 and 500 m associated with strong stratification and high phytoplankton biomass. Such low oxygen concentrations have never been reported so far from the coastal Bay of Bengal. Despite the existence of an environment conducive to denitrification in the coastal Bay of Bengal, accumulation of neither secondary nitrite nor nitrous oxide (N2O) was observed. The absence of denitrification was reported to be caused by faster scavenging of organic matter and low bacterial respiration rates; in contrast, our results suggest that neither of these factors are potential reasons for the absence of denitrification in the coastal Bay of Bengal.  相似文献   

18.
The interplay between the oxygen minimum zone and remotely-forced oxygenation episodes determines the fate of the benthic subsystem off the Central Peruvian coast. We analyzed a 12 year monthly time-series of oceanographic and benthic parameters at 94 m depth off Callao, Central Peru (12°S), to analyze: (i) near-bottom oxygen level on the continental shelf in relation to dynamic height on the equator (095°W); and (ii) benthic ecosystem responses to oxygen change (macrobiotic infauna, meiofauna, and sulphide-oxidizing bacteria, Thioploca spp.). Shelf oxygenation episodes occurred after equatorial dynamic height increases one month before, consistent with the propagation of coastal trapped waves. Several but not all of these episodes occurred during El Niños. The benthic biota responded to oxygenation episodes by undergoing succession through three major ecological states. Under strong oxygen deficiency or anoxia, the sediments were nearly defaunated of macro-invertebrates and Thioploca was scarce, such that nematode biomass dominated the macro- and meiobiotas. When frequency of oxygenation events reduced the periods of anoxia, but the prevailing oxygen range was 10–20 μmol L−1, mats of Thioploca formed and dominated the biomass. Finally, with frequent and intense (>40 μmol L−1) oxygenation, the sediments were colonized by macrofauna, which then dominated biomass. The Thioploca state evolved during the 2002–2003 weak EN, while the macrofauna state was developed during the onset of the strong1997–1998 EN. Repeated episodes of strong oxygen deficiency during the summer of 2004, in parallel with the occurrence of red tides in surface waters, resulted in the collapse of Thioploca mats and development of the Nematode state. Ecological interactions may affect persistence or the transition between benthic ecosystem states.  相似文献   

19.
通过现场调查研究报道了长江口及邻近海域表层沉积物中重金属、有机碳、石油类、硫化物以及氮磷的分布、来源以及沉积物环境质量.结果显示,长江口及邻近海域表层沉积物中重金属、有机碳、石油类、硫化物以及氮磷的分布很不均匀,除硫化物外,重金属、有机碳、石油类以及氮磷基本呈现长江口和杭州湾东北近岸的上海外海出现高值,其他区域浓度较低...  相似文献   

20.
大型底栖动物是滨海湿地常见生物类群,有报道属于大型底栖动物的海地瓜(Acaudina molpadioidea)等堵塞滨海核电厂冷源系统。本研究根据2017年10月至2018年7月在大亚湾潮下带52个站位用采泥器获得的4个季节大型底栖动物数据,以及2021年3月在大亚湾潮下带4个站位底拖网获得的海地瓜数据,建立了2种评价大型底栖动物堵塞滨海核电站冷源系统的风险指数,即采泥器法风险指数(grappler method risk index,GMRI)和底拖网法风险指数(bottom trawl risk index,BTRI)。在大亚湾7种大型底栖动物中,除了冬季和春季的双鳃内卷齿蚕(Aglaophamus dibranchis),以及夏季的短吻铲荚螠(Listriolobus brevirostris)的GMRI超过50%外,毛头梨体星虫(Apionsoma trichocephala)、冠奇异稚齿虫(Paraprionospio cristata)、波纹巴非蛤(Paratapes undulatus)、海地瓜和棘刺锚参(Protankyra bidentata)等的GMRI均小于50...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号