首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation is a follow-up of a paper in which we showed that both major magnetic components of the solar dynamo, viz. the toroidal and the poloidal ones, are correlated with average terrestrial surface temperatures. Here, we quantify, improve and specify that result and search for their causes.We studied seven recent temperature files. They were smoothed in order to eliminate the Schwabe-type (11 years) variations. While the total temperature gradient over the period of investigation (1610–1970) is 0.087 °C/century; a gradient of 0.077 °C/century is correlated with the equatorial (toroidal) magnetic field component. Half of it is explained by the increase of the Total Solar Irradiance over the period of investigation, while the other half is due to feedback by evaporated water vapour. A yet unexplained gradient of ?0.040 °C/century is correlated with the polar (poloidal) magnetic field. The residual temperature increase over that period, not correlated with solar variability, is 0.051 °C/century. It is ascribed to climatologic forcings and internal modes of variation.We used these results to study present terrestrial surface warming. By subtracting the above-mentioned components from the observed temperatures we found a residual excess of 0.31° in 1999, this being the triangularly weighted residual over the period 1990–2008.We show that solar forcing of the ground temperature associated with significant feedback is a regularly occurring feature, by describing some well observed events during the Holocene.  相似文献   

2.
The generation and evolution of the Sun’s magnetic field and other stars is usually related to the dynamo mechanism. This mechanism is based on the consideration of the joint influence of the α effect and differential rotation. Dynamo sources can be located at different depths of the convection zone and can have different intensities. Based on such a system, the dynamical system in the case of the stellar dynamo in a two-layer medium has been constructed with regard to meridional fluxes in order to model the double cycle that corresponds to the simultaneous presence of 22-year and quasi-biennial magnetic field oscillations. It has been indicated that the regime of mixed oscillations can originate because a dynamo wave moves oppositely to the meridional flows in the upper layer of the convection zone. This results in the deceleration of the toroidal field propagation and in the generation of slow oscillations. In deeper layers, the directions of a dynamo wave and meridional flows coincide with each other, as a result of which fast magnetic fields originate. Therefore, the total contribution of two oscillations with different frequencies corresponds to the appearance of quasi-biennial cycles against 22-year cycles. It has been indicated that the beating regime, which can be related to the secular oscillations of solar magnetic activity, originates in the system when the meridional flows are weak.  相似文献   

3.
The well-known “toroidal theorem” of Elsasser and Bullard and Gellman rules out dynamo action in a conducting sphere when the velocity field has no poloidal part. It is here shown that for a fixed toroidal velocity field any poloidal velocity must attain a finite size if dynamo action is to be possible. The resulting “anti-dynamo” theorem generalises the earlier result of Childress by giving a bound on the product of the suprema of the toroidal and poloidal velocities.  相似文献   

4.
It is proposed that convection driven dynamos operating in planetary cores could be oscillatory even when the oscillations are not directly noticeable from the outside. Examples of dynamo simulations are pointed out that exhibit oscillations in the structure of the azimuthally averaged toroidal magnetic flux while the mean poloidal field shows only variations in its amplitude. In the case of the geomagnetic field, global excursions may be associated with these oscillations. Long period dynamo simulations indicate that the oscillations may cause reversals once in a while. No special attempt has been made to use most realistic parameter values. Nevertheless some similarities between the simulations and the paleomagnetic record can be pointed out.  相似文献   

5.
The meridional circulation plays an essential role in determining the basic mechanism of the dynamo action in the case of a low eddy diffusivity. Flux-transport dynamos with strong return flow and a deep stagnation point are discussed in the case of a positive α-effect located in the overshoot layer and a rotation law consistent with helioseismology. By means of a linear dynamo model, it will be shown that the migration of the toroidal belts at lower latitudes and the periods of the activity cycles are consistent with the observations. Moreover, at variance with previous investigations, the typical critical dynamo numbers of dipolar solutions are significantly smaller than those of quadrupolar solutions even in the regime of strong flow.  相似文献   

6.
In this article we study the linear instability of the two-dimensional strongly stratified model for global MHD in the diffusive solar tachocline. Gilman and Fox [Gilman, P.A. and Fox, P., Joint instability of the latitudinal differential rotation and toroidal magnetic fields below the solar convection zone. Astrophys. J., 1997, 484, 439–454] showed that for ideal MHD, the observed surface differential rotation becomes more unstable than is predicted by Watson's [Watson, M., Shear instability of differential rotation in stars. Geophys. Astrophys. Fluid Dyn., 1981, 16, 285–298] nonmagnetic analysis. They showed that the solar differential rotation is unstable for essentially all reasonable values of the differential rotation in the presence of an antisymmetric toroidal field. They found that for the broad field case B φ~sinθcosθ, θ being the co-latitude, instability occurs only for the azimuthal m?=?1 mode, and concluded that modes which are symmetric (meridional flow in the same direction) about the equator onset at lower field strengths than the antisymmetric modes. We study the effect of viscosity and magnetic diffusivity in the strongly stably stratified case where diffusion is primarily along the level surfaces. We show that antisymmetric modes are now strongly preferred over symmetric modes, and that diffusion can sometimes be destabilising. Even solid body rotation can be destabilised through the action of magnetic field. In addition, we show that when diffusion is present, instability can occur when the longitudinal wavenumber m?=?2.  相似文献   

7.
Abstract

Models of a convectively driven hydromagnetic dynamo are constructed using a truncated modal expansion. The resulting nonlinear partial differential equations are integrated numerically. The results confirm that rotation is a necessary condition for effective dynamo action, and suggest that equipartition of kinetic and magnetic energies is qualitatively valid, and that toroidal field energies can be much larger than poloidal.  相似文献   

8.
Geomagnetic activity in each phase of the solar cycle consists of 3 parts: (1) a “floor” below which the geomagnetic activity cannot fall even in the absence of sunspots, related to moderate graduate commencement storms; (2) sunspot-related activity due to sudden commencement storms caused by coronal mass ejections; (3) graduate commencement storms due to high speed solar wind from solar coronal holes. We find that the changes in the “floor” depend on the global magnetic moment of the Sun, and on the other side, from the height of the “floor” we can judge about the amplitude of the sunspot cycle.  相似文献   

9.
Oscillatory modes with the period of approximately 7–8 yr were detected in monthly time series of sunspot numbers, geomagnetic activity aa index, NAO (North Atlantic Oscillation) index and near-surface air temperature from several mid-latitude European locations. Instantaneous phases of the modes underwent synchronization analysis and their statistically significant phase coherence, beginning from 1950s, has been observed. Thus the statistical evidence for a coupling between solar/geomagnetic activity and climate variability has been obtained from continuous monthly data, independent of the season, however, confined to the temporal scale related to oscillatory periods about 7–8 yr.  相似文献   

10.
We investigate the dynamo underpinning of solar cycle precursor schemes based on direct or indirect measures of the solar surface magnetic field. We do so for various types of mean-field-like kinematic axisymmetric dynamo models, where amplitude fluctuations are driven by zero-mean stochastic forcing of the dynamo number controlling the strength of the poloidal source term. In all stochastically forced models considered, the surface poloidal magnetic field is found to have precursor value only if it feeds back into the dynamo loop, which suggests that accurate determination of the magnetic flux budget of the solar polar fields may hold the key to dynamo model-based cycle forecasting.  相似文献   

11.
Abstract

A meridional circulation of sunspots has been measured through the digital analysis of the Meudon spectroheliograms from 1978 to 1983. Old and young sunspots follow a zonal meridional circulation, in several bands of latitude, in which two adjacent bands have opposite motions. This meridional circulation pattern is time-dependent. Using the H α filaments as magnetic field tracers, a large-scale magnetic pattern has been found that was also obtained independently by direct measurement of the magnetic field (Hoeksema, 1988).

The coincidence of a large-scale magnetic pattern with a zonal meridional circulation suggests the existence of azimuthal rolls below the surface, and these azimuthal rolls can explain a number of properties of the solar cycle. New rolls occur with increasing proximity to the Equator, thereby indicating the direction of propagation of the dynamo wave. The occurrence of rolls is very favorable to the emergence of the magnetic regions. The rolls also influence the magnetic complexity of the active regions. They modulate the surface rotation through the Coriolis force, which accelerates or decelerates the fluid particles. They therefore offer a plausible explanation of the torsional oscillation pattern.

There are a number of problems raised by such an unexpected circulation pattern: for example, the coexistence of axisymmeric rolls with hypothetical giant cells, the location of the dynamo source below or within the convective zone, and the coupling of the radiative interior and the convective layers. To resolve these important issues, continuous observational studies are needed of the manifestation of solar activity, as well as of radius and luminosity variations. So, we have aimed our paper at an audience of theoreticians in the hope that they take up the challenges we describe.  相似文献   

12.
The sun was very active in the declining phase of solar cycle 23. Large sunspot active regions gave origin to multiple flare and coronal mass ejection (CME) activity in the interval 2003–2005. On November 2004, the active region AR 10696 was the origin of dozens of flares and many CMEs. Some events of this solar activity region resulted in two large geomagnetic storms, or superstorms (Dst??250 nT) on November 8, peak Dst=?373 nT, and on November 10, peak Dst=?289 nT. It is the purpose of this article to identify the interplanetary origins of these two superstorms. The southward-directed interplanetary magnetic fields (IMF Bs) that caused the two superstorms were related to a magnetic cloud (MC) field for the first superstorm, and a combination of sheath and MC fields for the second superstorm. However, this simple, classic picture is complicated by the presence of multiple shocks and waves. Six fast-forward shocks and, at least, two reverse waves were observed in the period of the two superstorms. A detailed analysis of these complex interplanetary features is performed in this work.  相似文献   

13.
During the declining phase of the last three solar cycles, secondary peaks have been detected 2–3 years after the main peak of sunspot number. The main peak of cycle 23 was in 2001, but a sudden increase of the solar activity occurred during the period October 17 to November 10, 2003 (the so-called Halloween storms). A similar storm occurred 1 year later, during the period October 3 to November 13, 2004. These events are considered as secondary peaks during the declining phase of cycle 23. Secondary peaks during declining phase of the last 10 solar cycles were detected by Gonzalez and Tsurutani [1990. Planetary and Space Science 38, 181–187]. During Halloween storm period, the sunspot area increased up to 1.11×10?9 hemisphere on October 19, and grow up to 5.69×10?9 hemisphere on October 30, 2003. Then it decreased to 1.11×10?9 hemisphere on November 4, 2003. Also, the radio flux of λ=10.7 cm increased from 120 sfu on October 19, to 298 sfu on October 26, 2003, then decreased to 168 sfu on November 4, 2003. Two eruptive solar proton flares were released on 26 and 28 October 2003, the latter being the most eruptive flare recorded since 1976 (values reaching X17/4B).The aim of this study is to follow the morphological and magnetic changes of the active region before, during, and after the production of high-energy flares. Furthermore, the causes of release of these eruptive storms have been discussed for the period, October–November 2003, during the declining phase of the solar cycle 23.  相似文献   

14.
We investigate the temporal evolution of the magnetic dipole field intensity of the Earth through a multiscale dynamo mechanism. On a large range of spatio-temporal scales, the helical motions of the fluid flow are given by a schematic model of a fully developed turbulence. The system construction is symmetric with respect to left-handed and right-handed cyclones. The multiscale cyclonic turbulence coupled with a differential rotation (schematic ω dynamo) or alone (schematic 2 dynamo) is the ingredient of the loop through which poloidal and toroidal fields are built from one another. Two kinds of reaction of the magnetic field on the flow are considered: the presence of a magnetic field first favours a larger-scale organization of the flow, and, second, impedes this flow by the effect of growing Lorentz forces. We obtain the general features of the geomagnetic field intensity observed over geological times and describe a general mechanism for reversals, excursions and secular variation. The mechanism happens to keep a memory during the chrons and loose it during the events (excursions and inversions).  相似文献   

15.
Thirty-six cases of Pc5 geomagnetic pulsations on the GOES-8 geostationary satellite for 2001, which had amplitudes equal to several nanoteslas and continued for more than an hour, have been studied. Twenty-two and 14 pulsations were toroidal and poloidal, respectively. All these pulsations were compared with geomagnetic observations at the Poste-de-la-Baleine observatory (PBQ), which was located near the satellite projection. It was established that the pulsation frequencies on the ground and in the magnetosphere do not always coincide. It has been detected that poloidal oscillations have small and large amplitudes on the ground and in the magnetosphere, respectively; the situation is opposite for toroidal oscillations. The amplitude of ground-level pulsations to a larger degree depends on the azimuthal field component in the magnetosphere than on the radial component.  相似文献   

16.
We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by three kinds of the inhomogeneities; i.e., inhomogeneous turbulence, the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.  相似文献   

17.
Effects of the solar activity on the geomagnetic Sq field were studied by examining the correlation of the Sq amplitude in the Y-component with the sunspot number or height integrated Pedersen and Hall conductivities of the ionosphere at Kakioka, Chambon La Foret and Port Moresby for a period of 21 years. It was found that solar activity dependence of the Sq amplitude is almost explained by the effect of the local ionospheric conductivity if the month is fixed. That is, the solar activity dependence in each month is mainly caused by the local conductivity. However, the amplitude is clearly small in winter for the same conductivity value. This is probably due to the seasonal difference of the neutral winds driving ionospheric dynamo currents or to the magnetic effect of the field-aligned currents connecting both hemispheres driven by the asymmetric dynamo action in the ionosphere.  相似文献   

18.
We investigate the effects of penetration electric fields, meridional thermospheric neutral winds, and composition perturbation zones (CPZs) on the distribution of low-latitude plasma during the 7–11 November 2004 geomagnetic superstorm. The impact on low-latitude plasma was assessed using total electron content (TEC) measurements from a latitudinally distributed array of ground-based GPS receivers in South America. Jicamarca Radio Observatory incoherent scatter radar measurements of vertical E×B drift are used in combination with the Low-Latitude IONospheric Sector (LLIONS) model to examine how penetration electric fields and meridional neutral winds shape low-latitude TEC. It is found that superfountain conditions pertain between ~1900 and 2100 UT on 9 November, creating enhanced equatorial ionization anomaly (EIA) crests at ±20° geomagnetic latitude. Large-amplitude and/or long-duration changes in the electric field were found to produce significant changes in EIA plasma density and latitudinal location, with a delay time of ~2–2.5 h. Superfountain drifts were primarily responsible for EIA TEC levels; meridional winds were needed only to create hemispherical crest TEC asymmetries. The [O/N2] density ratio (derived from the GUVI instrument, flown on the TIMED satellite) and measurements of total atmospheric density (from the GRACE satellites), combined with TEC measurements, yield information regarding a likely CPZ that appeared on 10 November, suppressing TEC for over 16 h.  相似文献   

19.
The GPS-derived total electron content (TEC) and NmF2 are measured at the Chung-Li ionosonde station (24.9°N, 121°E) in order to study the variations in slab thickness (τ) of the ionosphere at low-latitudes ionosphere during 1996–1999, corresponding to half of the 23rd solar cycle. This study presents the diurnal, seasonal, and solar flux variations in τ for different solar phases. The seasonal variations show that the average daily value is greater during summer and the reverse is true during equinox in the equatorial ionization anomaly (EIA) region. Moreover, the τ values are greater during the daytime (0800–1600 LT) and nighttime (2000–0400 LT) for summer and winter, respectively. The diurnal variation shows two abnormal peaks that appear during the pre-sunrise and post-sunset hours. The peak values decrease as the sunspot number increases particularly for the pre-sunrise peak. Furthermore, the variation in the F-peak height (hpF2) indicates that a thermospheric wind toward the equator leads to an increase in hpF2 and an enhancement in τ during the pre-sunrise period. Furthermore, the study shows the variations of τ values for different geophysical conditions such as the geomagnetic storm and earthquake. A comprehensive discussion about the relation between τ and the geophysical events is provided in the paper.  相似文献   

20.
Permanent magnetism and conventional dynamo theory are possible but problematic explanations for the magnitude of the Mercurian magnetic field. A new model is proposed in which thermoelectric currents driven by temperature differences at a bumpy core-mantle boundary are responsible for the (unobserved) toroidal field, and the helicity of convective motions in a thin outer core (thickness 102 km) induces the observed poloidal field from the toroidal field. The observed field of 3 × 10−7 T can be reproduced provided the electrical conductivity of Mercury's semiconducting mantle approaches 103 Ω−1 m−1. This model may be testable by future missions to Mercury because it predicts a more complicated field geometry than conventional dynamo theories. However, it is argued that polar wander may cause the core-mantle topography to migrate so that some aspects of the rotational symmetry may be reflected in the observed field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号