首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the estimated source parameters from SH-wave spectral modeling of selected 463 aftershocks (2002–06) of the 26 January 2001 Bhuj earthquake, the well-recorded largest continental intraplate earthquake. The estimated seismic moment (Mo), corner frequency (fc), source radius (r) and stress drop (Δσ) for aftershocks of moment magnitude 1.7 to 5.6 range from 3.55×1011 to 2.84×1017 N-m, 1.3 to 11.83 Hz, 107 to 1515 m and 0.13 to 26.7 MPa, respectively, while the errors in fc and Δσ are found to be 1.1 Hz and 1.1 MPa, respectively. We also notice that the near surface attenuation factor (k) values vary from 0.02 to 0.03. Our estimates reveal that the stress drop values show more scatter (Mo0.5 to 1 is proportional to Δσ) toward the larger Mo values (≥1014.5 N-m), while they show a more systematic nature (Mo3 is proportional to Δσ) for smaller Mo values (<1014.5 N-m), which can be explained as a consequence of a nearly constant rupture radius for smaller aftershocks in the region. The large stress drops (= 10 MPa) associated with events on the north Wagad fault (at 15–30 km depth) and Gedi fault (at 3–15 km depth) can be attributed to the large stress developed at hypocentral depths as a result of high fluid pressure and the presence of mafic intrusive bodies beneath these two fault zones.  相似文献   

2.
During the 1st decade of the 21st century, the study area of Talala, Saurashtra of western India witnessed three damaging earthquakes of moderate magnitude, year 2007 [Mw 5.0; Mw 4.8] and in the year 2011 [Mw 5.1] that generated public panic in the region. The last damaging moderate earthquake of the 20th October 2011 in Talala region (21.09°N;70.45°E), located at about 200 km south to the devastating 2001 Bhuj (23.412°N, 70.232°E) mainshock (Mw 7.6), jolted the entire Saurashtra region of Gujarat. A long series of aftershocks followed hereafter, recorded at nine seismograph/accelerograph stations. Hypocenters of aftershocks were relocated accurately using absolute and relative travel time (double-difference) method. In this study, we, for the first time, determined 3-D tomographic images of the upper crust beneath the 2011 Talala earthquake source zone by inverting about 1135 P and 1125 S wave arrival time data. Estimates of seismic velocities (Vp, Vs) and Poisson’s ratio (σ) structures offer a reliable interpretation of crustal heterogeneities and their bearing on geneses of moderate earthquakes and their aftershock sequences beneath the source zone. It is found that the 2011 Talala mainshock hypocenter depth (6 km) is located near the boundary of the low and high velocity (Vp, Vs) and the source zone is associated with low-σ anomalies guarded by the prominent high-σ anomalies along the active fault zone having strike-slip motion beneath the earthquake source zone. The pattern of distribution of (Vp, Vs, σ) and its association with occurrences of aftershocks provide seismological evidence for the neo-tectonics in the region having left lateral strike-slip motion of the fault.  相似文献   

3.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

4.
This study pertains to prediction of liquefaction susceptibility of unconsolidated sediments using artificial neural network (ANN) as a prediction model. The backpropagation neural network was trained, tested, and validated with 23 datasets comprising parameters such as cyclic resistance ratio (CRR), cyclic stress ratio (CSR), liquefaction severity index (LSI), and liquefaction sensitivity index (LSeI). The network was also trained to predict the CRR values from LSI, LSeI, and CSR values. The predicted results were comparable with the field data on CRR and liquefaction severity. Thus, this study indicates the potentiality of the ANN technique in mapping the liquefaction susceptibility of the area.  相似文献   

5.
Poroelastic relaxation and aftershocks of the 2001 Bhuj earthquake, India   总被引:1,自引:0,他引:1  
We analyse aftershocks of the 26 January 2001 Bhuj earthquake, India, that were recorded for 10 weeks following the mainshock. We calculate undrained or instantaneous pore pressure and change in Coulomb stress due to the earthquake and their poroelastic relaxation in the following 10 weeks period. Almost all aftershocks occurred in the region of coseismic dilatation. In the subsequent period, pore pressure increased through relaxation in the dilatation region which further modified coseismic Coulomb stress. Maximum increase in pore pressure is estimated to be about 0.7 MPa in 60 days time following the mainshock. Correlation between the zones of increased pore pressure and postseismic Coulomb stress with that of aftershocks, suggests a definite role of fluid diffusion in their delayed triggering.  相似文献   

6.
Spatial-temporal patterns of aftershocks of the 2001 Mw7.7 Bhuj earthquake during 2001–2008 reveal a northward spatial migration of seismic activity in the Kachchh seismic zone, which could be related with the loading stresses caused by the continued occurrences of aftershocks on the north Wagad fault (NWF), the causative fault of the 2001-mainshock. Aiming at explaining the observed northward migration of activity, we modelled the Coulomb failure stress change (DCFS) produced by the 2001-mainshock, the 2006 Mw5.6 Gedi fault (GF) and the 2007 Mw4.5 Allah bund fault (ABF) events on optimally oriented plane. A strong correlation between occurrences of earthquakes and regions of increased DCFS is obtained on the associated three faults i.e. NWF, ABF and GF. Predicted DCFS on the GF increased by 0.9 MPa at 3 km depth, where the 7th March 2006 Mw5.6 event occurred, whereas predicted DCFS on the ABF increased by 0.07 MPa at 30 km depth, where the 15th December 2007 Mw4.5 event occurred. Focal mechanism solutions of three events on the ABF have been estimated using the iterative inversion of broadband data from 5–10 stations, which are also constrained by the first P-motion data from 8–12 stations. These focal mechanism solutions for the ABF events reveal a dominant reverse movement with a strike-slip component along a preferred northwest or northeast dipping plane (∼50–70°). Focal mechanisms of the events on all the three fault zones reveal an N-S oriented P- axis or maximum principal stress in the region, which agrees with the prevailing N-S compression over the Indian plate. It is apparent that the northward migration of the static stress changes from the NWF, resulting from the occurrence 2001 Bhuj mainshock, might have caused the occurrence of the events on the GF and ABF during 2006–08.  相似文献   

7.
Mandal  Prantik 《Natural Hazards》2022,111(1):239-260
Natural Hazards - Local earthquake seismic tomography of the Kachchh rift zone (India) using arrival times of P- and S-waves detect a semi-circular region of lower seismic velocities (8–15%...  相似文献   

8.
Earthquake source parameters and crustal \(Q_{0}\) values for the 138 selected local events of (\(\hbox {M}_{\mathrm{w}}{:}2.5{-}4.4\)) the 2001 Bhuj earthquake sequence have been computed through inversion modelling of S-waves from three-component broadband seismometer data. SEISAN software has been used to locate the identified local earthquakes, which were recorded at least three or more stations of the Kachchh seismological network. Three component spectra of S-wave are being inverted by using the Levenberg–Marquardt non-linear inversion technique, wherein the inversion scheme is formulated based on \(\omega ^{2}\) source model. SAC Software (seismic analysis code) is being utilized for calculating three-component displacement and velocity spectra of S-wave. The displacement spectra are used for estimating corner frequency (in Hz) and long period spectral level (in nm-s). These two parameters play a key role in estimating earthquake source parameters. The crustal \({Q}_{0}\) values have been computed simultaneously for each component of three-component broadband seismograph. The estimated seismic moment (\(M_{0}\)) and source radius (r) using S-wave spectra range from 7.03E+12 to 5.36E+15 N-m and 178.56 to 565.21 m, respectively. The corner frequencies for S-wave vary from 3.025 to 7.425 Hz. We also estimated the radiated energy (\(E_{S}\)) using velocity spectra, which is varying from 2.76E+06 to 4.07E+11 Joules. The estimated apparent stress drop and static stress drop values range from 0.01 to 2.56 and 0.53 to 36.79 MPa, respectively. Our study also reveals that estimated \(Q_{0}\) values vary from 119.0 to 7229.5, with an average \(Q_{0}\) value of 701. Another important parameter, by which the earthquake rupture process can be recognized, is Zuniga parameter. It suggests that most of the Kachchh events follow the frictional overshoot model. Our estimated static stress drop values are higher than the apparent stress drop values. And the stress drop values are quite larger for intraplate earthquakes than the interplate earthquakes.  相似文献   

9.
Several pieces of studies on the January 26, 2001, Bhuj earthquake (Mw 7.6) revealed that the mainshock was triggered on the hidden unmapped fault in the western part of Indian stable continental region that caused a huge loss in the entire Kachchh rift basin of Gujarat, India. Occurrences of infrequent earthquakes of Mw 7.6 due to existence of hidden and unmapped faults on the surface have become one of the key issues for geoscientific research, which need to be addressed for evolving plausible earthquake hazard mitigation model. In this study, we have carried out a detailed autopsy of the 2001 Bhuj earthquake source zone by applying three-dimensional (3-D) local earthquake tomography (LET) method to a completely new data set consisting of 576 local earthquakes recorded between November 2006 and April 2009 by a seismic network consisting of 22 numbers of three-component broadband digital seismograph stations. In the present study, a total of 7560 arrival times of P-wave (3820) and S-wave (3740) recorded at least 4 seismograph stations were inverted to assimilate 3-D P-wave velocity (Vp), S-wave velocity (Vs), and Poisson’s ratio (σ) structures beneath the 2001 Bhuj earthquake source zone for reliable interpretation of the imaged anomalies and its bearing on earthquake hazard of the region. The source zone is located near the triple junction formed by juxtapositions of three Indian, Arabian, and Iranian tectonic plates that might have facilitated the process of brittle failure at a depth of 25 km beneath the KRB, Gujarat, which caused a gigantic loss to both property and persons of the region. There may be several hidden seismogenic faults around the epicentral zone of the 2001 Bhuj earthquake in the area, which are detectable using 3-D tomography to minimize earthquake hazard for a region. We infer that the use of detailed 3-D seismic tomography may offer potential information on hidden and unmapped faults beneath the plate interior to unravel the genesis of such big damaging earthquakes. This study may help in evolving a comprehensive earthquake risk mitigation model for regions of analogous geotectonic settings, elsewhere in the world.  相似文献   

10.
Prabhas Pande 《Natural Hazards》2013,65(2):1045-1062
Of the intraplate seismic events, the January 26, 2001 Bhuj earthquake (Mw 7.7) would be remembered as one of the deadliest, in which 13,805 human lives were lost, 0.177 million injured and a total of 1,205,198 houses were fully or partly damaged in 16 districts of Gujarat state with an estimated overall loss of Rs. 284, 23 million. The brunt of the calamity was borne by five districts, namely Kachchh, Ahmadabad, Rajkot, Jamnagar and Surendranagar, where 99?% of the total casualties and damage occurred. In the neighbouring parts of Sindhh Province of Pakistan, 40 human casualties were reported, and some buildings cracked in the Karachi city as well. In the Kachchh district of Gujarat state, the telecommunication links and power supply were totally disrupted, road and rail links partially impaired and water supply snapped at many places. The Bhuj airbase had to be closed for some time due to damage to the infrastructure. The macroseismic survey carried out by the Geological Survey of India in an area as large as 1.2 million?sq?km indicated an epicentral intensity as high as X on the MSK scale in an area of 780?sq?km in the central part of Kachchh rift basin. Apart from damages to civil structures, the January 26 earthquake induced conspicuous terrain deformation in the form of liquefaction features, structural ground deformation and low-order slope failures that were mainly prevalent within the higher intensity isoseists. Liquefaction occurred in an area of about 50,000?sq?km. The extensive plains of Rann of Kachchh, the marshy tracts of the Little Rann and the shallow groundwater table zones of Banni Land provided the most conducive geotechnical environments for the development of seismites. The liquefaction activity was profuse in seismic intensity zones X and IX, widespread in intensity VIII, subdued in intensity VII and stray in intensity VI. The common forms of liquefaction were sand blows/boils, ground fissures, craters, lateral spreading and slumping. Ground deformation of tectonic origin was witnessed in the epicentral tract. Such features, though much less subdued in comparison with the 1819 large earthquake (Mw 7.8) in region, occurred along the Kachchh Mainland fault (KMF) and along a transverse lineament, referred to as Manfara?CKharoi fault. The manifestations were in the form of fractures, displacement of strata, linear subsidence, upheaval, formation of micro-basins/micro-ridges, ripping off of rock surface, and at places violent forms of liquefaction. The localities where coseismic deformations were observed include Bodhormora, Sikra, Vondh, Chobari, Manfara and Kharoi. The 2001 event has demonstrated the role of local geology in influencing the ground motion characteristics and, therefore, the hazard estimation.  相似文献   

11.
《地学前缘(英文版)》2020,11(5):1743-1754
Broad-band and long-period magnetotelluric(MT) data were acquired along an east-west trending traverse of nearly 200 km across the Kachchh,Cambay rift basins,and Aravalli-Delhi fold belt(ADFB),western India.The regional strike analysis of MT data indicated an approximate N59°E geoelectric strike direction under the traverse and it is in fair agreement with the predominant geological strike in the study area.The decomposed transverse electric(TE)-and transverse magnetic(TM)-data modes were inverted using a nonlinear conjugate gradient algorithm to image the electrical lithospheric structure across the Cambay rift basin and its surrounding regions.These studies show a thick(~1-5 km) layer of conductive Tertiary-Mesozoic sediments beneath the Kachchh and Cambay rift basins.The resistive blocks indicate presence of basic/ultrabasic volcanic intrusives,depleted mantle lithosphere,and different Precambrian structural units.The crustal conductor delineated within the ADFB indicates the presence of fluids within the fault zones,sulfide mineralization within polyphase metamorphic rocks,and/or Aravalli-Delhi sediments/metasediments.The observed conductive anomalies beneath the Cambay rift basin indicate the presence of basaltic underplating,volatile(CO_2,H_2 O) enriched melts and channelization of melt fractions/fluids into crustal depths that occurred due to plume-lithosphere interactions.The variations in electrical resistivity observed across the profile indicate that the impact of Reunion plume on lithospheric structures of the Cambay rift basin is more dominant at western continental margin of India(WCMI) and thus support the hypothesis proposed by Campbell Griffiths about the plume-lithosphere interactions.  相似文献   

12.
176 vertical-component, short period observations from aftershocks of the Mw 7.7, 26 January, 2001 Kachchh earthquake are used to estimate seismic wave attenuation in western India using uniform and two layer models. The magnitudes (Mw) of the earthquakes are less than 4.5, with depths less than 46 km and hypocentral distances up to 110 km. The studied frequencies are between 1 and 30 Hz. Two seismic wave attenuation factors, intrinsic absorption (Qi− 1) and scattering attenuation (Qs− 1) are estimated using the Multiple Lapse Time Window method which compares time integrated seismic wave energies with synthetic coda wave envelopes for a multiple isotropic scattering model. We first assume spatial uniformity of Qi− 1, Qs− 1 and S wave velocity (β). A second approach extends the multiple scattering hypothesis to media consisting of several layers characterized by vertically varying scattering coefficient (g), intrinsic absorption strength (h), density of the media (ρ) and shear wave velocity structure. The predicted coda envelopes are computed using Monte Carlo simulation. Results show that, under the assumption of spatial uniformity, scattering attenuation is greater than intrinsic absorption only for the lowest frequency band (1 to 2 Hz), whereas intrinsic absorption is predominant in the attenuation process at higher frequencies (2 to 30 Hz). The values of Q obtained range from Qt = 118, Qi = 246 and Qs = 227 at 1.5 Hz to Qt ≈ 4000, Qi ≈ 4600 and Qs ≈ 33,300 at 28 Hz center frequencies, being Qt− 1 a measure of total attenuation. Results also show that Qi− 1, Qs− 1 and Qt− 1 decrease proportional to fν. Two rates of decay are clearly observed for the low (1 to 6 Hz) and high (6 to 30 Hz) frequency ranges. Values of ν are estimated as 2.07 ± 0.05 and 0.44 ± 0.09 for total attenuation, 1.52 ± 0.21 and 0.48 ± 0.09 for intrinsic absorption and 3.63 ± 0.07 and 0.06 ± 0.08 for scattering attenuation for the low and high frequency ranges, respectively. Despite the lower resolution in deriving the attenuation parameters for a two layered crust, we find that scattering attenuation is comparable to or smaller than the intrinsic absorption in the crust whereas intrinsic absorption dominates in the mantle. Also, for a crustal layer of thickness 42 km, intrinsic absorption and scattering estimates in the crust are lower and greater than those of the mantle, respectively.  相似文献   

13.
14.
The invasion of alien species is a significant threat to global biodiversity and the top driver of climate change. The present study was conducted in the Great Rann of Kachchh, part of Kachchh Biosphere Reserve, Gujarat, India, which has been severely affected by invasion of Prosopis juliflora. The invasive weed infestation has been identified using multi-temporal remote sensing datasets of 1977, 1990, 1999, 2005 and 2011. Spatial analyses of the transition matrix, extent of invasive colonies, patchiness, coalescence and rate of spread were carried out. During the study period of three and half decades, almost 295 km2 of the natural land cover was converted into Prosopis cover. This study has shown an increment of 42.9% of area under Prosopis cover in the Great Rann of Kachchh, part of the Kachchh Biosphere Reserve during 1977 to 2011. Spatial analysis indicates high occupancy of Prosopis cover with most of the invasion (95.9%) occurring in the grasslands and only 4.1% in other land cover types. The process of Prosopis invasion shows high patch initiation, followed by coalescence, indicating aggressive colonization of species. The number of patches within an area of < 1 km2 increased from 1977 to 2011, indicating the formation of new Prosopis habitats by replacing the grasslands. The largest patch of Prosopis cover increased from 144 km2 in 1977 to 430 km2 in 2011. The estimated mean patch size was 7.8 km2 in 1977. The mean patch size was largest during 2011, i.e., 9 km2. The annual spread rate for Prosopis has been estimated as 2.1% during 2005–2011. The present work has investigated the long term changes in Prosopis cover in the Great Rann of Kachchh, part of Kachchh Biosphere Reserve. The spatial database generated will be useful in preparing strategies for the management of Prosopis juliflora.  相似文献   

15.
The Bhuj earthquake (Mw = 7.9) occurred in the western part of India on 26th January 2001 and resulted in the loss of 20,000 lives and caused extensive damage to property. Soil liquefaction related ground failures such as lateral spreading caused significant damage to bridges, dams and other civil engineering structures in entire Kachchh peninsula. The Bhuj area is a part of large sedimentary basin filled with Jurassic, Tertiary and Quaternary deposits. This work pertains to mapping the areas that showed sudden increase in soil moisture after the seismic event, using remote sensing technique. Multi-spectral, spatial and temporal data sets from Indian Remote Sensing Satellite are used to derive the Liquefaction Sensitivity Index (LSeI). The basic concept behind LSeI is that the near infrared and shortwave infrared regions of electromagnetic spectrum are highly absorbed by soil moisture. Thus, the LSeI is herein used to identify the areas with increase in soil moisture after the seismic event. The LSeI map of Bhuj is then correlated with field-based observation on Cyclic Stress Ratio (CSR) and Cyclic Resistance Ratio (CRR), depth to water table, soil density and Liquefaction Severity Index (LSI). The derived LSeI values are in agreement with liquefaction susceptible criteria and observed LSI (R 2 = 0.97). The results of the study indicate that the LSeI after calibration with LSI can be used as a quick tool to map the liquefied areas. On the basis of LSeI, LSI, CRR, CSR and saturation, the unconsolidated sediments of the Bhuj area are classified into three susceptibility classes.  相似文献   

16.
A.P Singh  D.M Mall   《Tectonophysics》1998,290(3-4):285-297
In 1967 a major earthquake in the Koyna region attracted attention to the hitherto considered stable Indian shield. The region is covered by a thick pile of Deccan lava flows and characterized by several hidden tectonic features and complex geophysical signatures. Although deep seismic sounding studies have provided vital information regarding the crustal structure of the Koyna region, much remains unknown. The two available DSS profiles in the region have been combined along the trend of Bouguer gravity anomalies. Unified 2-D density modelling of the Koyna crust/mantle suggests a ca. 3 km thick and 40 km wide high velocity/high density anomalous layer at the base of the crust along the coastline. The thickness of this anomalous layer decreases gradually towards the east and ahead of the Koyna gravity low the layer ceases to be visible. Based on the seismic and gravity data interpretation in the geodynamical/rheological boundary conditions the anomalous layer is attributed to igneous crustal accretion at the base of the crust. It is suggested that the underplated layer is the imprint of the magmatism caused by the deep mantle plume when the northward migrating Indian plate passed over the Reunion hotspot.  相似文献   

17.
Three metapelitic xenolith suites in the Neogene Volcanic Province (NVP) of SE Spain (from SW to NE: El Hoyazo, Mazarrón and Mar Menor) originated by partial melting at different crustal depths, decreasing from 20–25 km in the SW to 9–12 km in the NE. Peak temperatures reached c. 900 °C. The xenolith source level is equated with the base of a felsic upper crust of high melting potential (‘fertility’). At El Hoyazo, this matches a thin, intracrustal low‐velocity zone recently inferred from seismic studies. Isostatic calculations indicate that this zone increases in thickness from SW to NE. A model of increasing upper crustal thinning from SW to NE in the NVP, accompanied by mafic underplating, is consistent with the 9 Ma petrological data, with current heat flow, seismic data and gravimetry. It is concluded that significant crustal extension occurred in the NVP in the late Miocene, i.e. after the main phase of widespread extension, exhumation of high‐pressure rocks and formation of the Alborán Sea.  相似文献   

18.
The Geological Survey of India (GSI) established a twelve-station temporary microearthquake (MEQ) network to monitor the aftershocks in the epicenter area of the Bhuj earthquake (M w7.5) of 26th January 2001. The main shock occurred in the Kutch rift basin with the epicenter to the north of Bhachao village, at an estimated depth of 25 km (IMD). About 3000 aftershocks (M d ≥ 1.0), were recorded by the GSI network over a monitoring period of about two and half months from 29th January 2001 to 15th April 2001. About 800 aftershocks (M d ≥ 2.0) are located in this study. The epicenters are clustered in an area 60 km × 30 km, between 23.3‡N and 23.6‡N and 70‡E and 70.6‡E. The main shock epicenter is also located within this zone. Two major aftershock trends are observed; one in the NE direction and other in the NW direction. Out of these two trends, the NE trend was more pronounced with depth. The major NE-SW trend is parallel to the Anjar-Rapar lineament. The other trend along NW-SE is parallel to the Bhachao lineament. The aftershocks at a shallower depth (<10km) are aligned only along the NW-SE direction. The depth slice at 10 km to 20 km shows both the NE-SW trend and the NW-SE trend. At greater depth (20 km–38 km) the NE-SW trend becomes more predominant. This observation suggests that the major rupture of the main shock took place at a depth level more than 20 km; it propagated along the NE-SW direction, and a conjugate rupture followed the NW-SE direction. A N-S depth section of the aftershocks shows that some aftershocks are clustered at shallower depth ≤ 10 km, but intense activity is observed at 15–38 km depth. There is almost an aseismic layer at 10–15 km depth. The activity is sparse below 38 km. The estimated depth of the main shock at 25 km is consistent with the cluster of maximum number of the aftershocks at 20–38 km. A NW-SE depth section of the aftershocks, perpendicular to the major NE-SW trend, indicates a SE dipping plane and a NE-SW depth section across the NW-SE trend shows a SW dipping plane. The epicentral map of the stronger aftershocksM ≥ 4.0 shows a prominent NE trend. Stronger aftershocks have followed the major rupture trend of the main shock. The depth section of these stronger aftershocks reveals that it occurred in the depth range of 20 to 38 km, and corroborates with a south dipping seismogenic plane.  相似文献   

19.
The Songliao Basin, the largest oil-producing basin in China, was the centre of late Mesozoic rifting and lithospheric thinning in northeastern China. However, the rifts are still poorly revealed due to a thick cover of subsidence successions. By structural interpretation and sequential restoration of cross-sections based on new 2D seismic data and well data, this study presents the structural style, basin evolution, and horizontal crustal extension of the central Songliao Basin. We have developed a novel method to retrieve the regional extension principal strains. The results enable an assignment of rifting into two episodes. The earlier episode (ca. 157–130 Ma) was dominated by distributed faulting of numerous planar normal faults trending NNE–SSW, NNW–SSE, or near NS, probably reflecting pre-existing basement fabrics; in contrast, the later episode (ca. 130–102 Ma) was controlled by localized extension along several major listric faults. Horizontal crustal extension during rifting is estimated to have been 11–28 km (10.6%–25.5%), with the long-term average rate varying from 0.20 to 0.51 mm yr–1. Regional horizontal strains show a gradual evolution from biaxial extension at the beginning of rifting to WNW–ESE uniaxial stretching during the later rifting episode. Brittle crustal extension is interpreted to have been associated with vertical strain due to tectonic stretching, which is estimated to have contributed more in thinning the lower crust than the mantle lithosphere. Accordingly, a two-episode dynamic model is proposed to explain rifting in the Songliao Basin. We suggest that the earlier event was dominated by delamination of the thickened continental lithosphere, whereas the later event was probably controlled by regional crustal detachment due to slab subduction and stagnancy of the Izanagi lithospheric plate.  相似文献   

20.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号