首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
Summary The Cretaceous Eclogite-Gneiss unit and its tectonic overburden (Micaschist, Phyllite and Lower Magdalensberg units) and the underlying Preims subunit of the Saualpe, Eastern Alps, have been investigated in order to constrain the mode of exhumation of the type locality of eclogites. 40Ar/39Ar ages of white mica from the eclogite-bearing unit suggest rapid, uniform cooling and exhumation between 86 and 78 Ma (Santonian-Campanian). Overlying units show upwards increasingly older ages with an age of 261.7 ± 1.4 Ma in the uppermost, low-grade metamorphic unit (Lower Magdalensberg unit). We consider this Permian age as geologically significant and to record a Permian tectonic event. Rocks of phyllite and micaschist units along western margins of the Saualpe block yield amphibole and white mica ages ranging from 123 to 130 Ma. These are considered to closely date the age of nappe stacking, whereas a single biotite age of 66–68 Ma from a shear zone is interpreted to date retrogression during normal faulting. Biotite and amphibole of Micaschist and Eclogite-Gneiss units show variable contents of extraneous argon. Consequently, their ages are in part geologically meaningless whereas other samples yield meaningful ages. The white mica ages from the Eclogite-Gneiss unit range from 78 to 85 Ma and argue for cooling through ca. 400 °C during the time as the westerly adjacent Upper Cretaceous Krappfeld collapse basin formed. The Preims subunit with paragneiss and marbles is considered to represent a large synmetamorphic shear zone at the base of the overthrusting Eclogite-Gneiss unit. The unit comprises a flat-lying foliation and a SE-trending lineation. This zone is interpreted to represent a zone of top-NW thrusting. A major ductile low-angle normal fault with top to ESE shear has been detected between the Eclogite-Gneiss and overlying units, and between the Micaschist and Phyllite units. The ductile thrust at the base and the low-angle normal fault at the top are considered to confine a NW-ward extruding high-pressure wedge. The new observations argue for rapid exhumation of a subducted high-pressure wedge within a subduction channel. Rapid surface erosion of the exhuming wedge might have facilitated exhumation. Eroded sedimentary rocks are preserved within adjacent Gosau basins, although only pebbles of low-grade metamorphic rocks of the uppermost tectonic unit can be found in these basins.  相似文献   

2.
Between the Qiangtang Block and Yalung-Zangpo Suture Zone in the south-central Tibetan Plateau, the following geological units and suture zones have been identified from south to north: the Gangdese Granitic Belt, the Lhasa Block, the Nyainqentanghla Shear Zone, the Dangxiong–Sangxiong Tectono-granitic Belt and the Bangong–Nujiang Suture Zone. To better constrain the tectonic evolution and cooling histories of these units, 40Ar/39Ar muscovite, biotite and K-feldspar, as well as apatite fission track dating and thermochronological analysis have been carried out. The analytical results indicate that the south-central Tibetan Plateau, with the exception of the Nyainqentanghla Shear Zone, provides a record of three cooling stages at 165–150, 130–110 and ∼45–35 Ma. Fission-track data modelling also indicates that the stages of cooling were different in the different tectonic belts or blocks. Very different cooling phases occurred in the south-central Tibetan Plateau, compared with southern Tibet, as well as along the Yalung–Zangpo Suture Zone. There is no thermochronological evidence to indicate that the south-central part of Tibetan Plateau was influenced by the underthrusting of Indian Plate.The three-stage cooling history and the stages of tectonic exhumation were controlled completely by the closure of the Bangong–Nujiang Suture Zone along its eastern segment during Middle–Late Jurassic (165–150 Ma) and its western segment in the Early–Late Cretaceous (130–110 Ma), as well as by the collision between the Indian and Asian plates in the Paleogene (45–35 Ma).  相似文献   

3.
^40Ar/^39Ar测年中的冷却年龄和变形年龄   总被引:2,自引:1,他引:2  
王勇生  朱光 《地质通报》2005,24(3):285-290
^40Ar/^39Ar法年龄数据的解释与Ar同位素在矿物中的封闭温度有关。冷却年龄只能限制变质——变形事件发生的时间区间,不能真正代表地质事件的发生时间。因此,必须想办法得到变形年龄。本文从封闭温度概念出发,探讨了压力、冷却速率、有效扩散范围和几何形态、颗粒大小、动力学参数等对矿物封闭温度的影响,介绍了新近提出的“封闭窗”概念,并讨论了在什么情况下可以获得变形年龄。  相似文献   

4.
40Ar/39Ar data from a profile across the Main Central Thrust in the eastern Bhutan Himalaya indicate muscovite cooling ages of 14.1±0.2 Ma from a sample in the immediate hanging wall of the thrust and 11.2 Ma from about 400 m structurally higher in the hanging wall. These two ages are repeated by two samples from 2.1 and 4.7 km vertical distance from the thrust within the hanging wall, respectively. A single apatite fission track age from the immediate hanging wall of the thrust gives an age of 3.1±0.6 Ma. Pressure–temperature estimates give temperatures around 650°C and 6.5 kbar for the highest sample collected. Samples closer to the Main Central Thrust give also temperatures between 600 and 650°C at the same pressure, indicating possibly a slight temperature decrease with proximity to the thrust. However, uncertainties are large and the parageneses are thermodynamically too highly variant to place much significance on their interpretation.The 40Ar/39Ar cooling age data are consistent with a repetition of the sequence in the hanging wall of the thrust. They confirm the data of Davidson et al. (1997; Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite, High Himalayan Crystallines, Bhutan. Journal of Metamorphic Geology 15, 593–612) and are consistent with a more rapid exhumation of deeper levels towards the centre of the High Himalayan Crystalline Complex. Despite the large uncertainties, the PT data shown here are also consistent with this interpretation. The apatite fission track results reveal low-temperature cooling and final exhumation of the Main Central Thrust at the same time as in Nepal.  相似文献   

5.
西秦岭北缘中生代构造活动的^40Ar/^39Ar、FT热年代学证据   总被引:7,自引:3,他引:7  
钾长石MDD和磷灰石裂变径迹研究表明,西秦岭北缘地区存在2次区域性快速冷却事件,分别为约230~210MaB.P.和约140~120Ma B.P.。约230~210Ma B.P.的快速冷却事件可能反映西秦岭秦岭洋于印支期闭合,发生了大规模的岩浆侵入活动,以及随后造山带迅速褶皱、隆升事件;140~120Ma B.P.的快速冷却事件与西秦岭北缘断裂以北的白垩纪盆地发育的时间一致,可能与西秦岭北缘隆升,同时其以北地区形成巨大的盆地有直接关系。同时,该事件与燕山运动主幕发生的时间一致,说明中燕山期我国东西部广大区域普遍存在一次构造运动。  相似文献   

6.
Detailed 40Ar/39Ar geochronology on single grains of muscovite was performed in the Variscan Tanneron Massif (SE France) to determine the precise timing of the post-collisional exhumation processes. Thirty-two plateau ages, obtained on metamorphic and magmatic rocks sampled along an east–west transect through the massif, vary from 302 ± 2 to 321 ± 2 Ma, and reveal a heterogeneous exhumation of the lower crust that lasted about 20 Ma during late Carboniferous. In the eastern part of the massif, the closure of the K–Ar isotopic system is at 311–315 Ma, whereas in the middle part of the massif it closes earlier at 317–321 Ma. These cooling paths are likely to be the result of differential exhumation processes of distinct crustal blocks controlled by a major ductile fault, the La Moure fault that separates both domains. In the western part of the massif, the ages decrease from 318 to 303 Ma approaching the Rouet granite, which provides the youngest age at 303.6 ± 1.2 Ma. This age distribution can be explained by the occurrence of a thermal structure spatially associated to the magmatic complex. These ages argue in favour of a cooling of the magmatic body at around 15 Ma after the country rocks in the western Tanneron. The emplacement of the Rouet granite in the core of an antiform is responsible for recrystallization and post-isotopic closure disturbances of the K–Ar chronometer in the muscovite from the host rocks. These new 40Ar/39Ar ages clearly outline that at least two different processes may contribute to the exhumation of the lower crust in the later stage of collision. During the first stage between 320 and 310 Ma, the differential motion of tectonic blocks limited by ductile shear zones controls the post-collisional exhumation. This event could be related to orogen parallel shearing associated with crustal-scale strike-slip faults and regional folding. The final exhumation stages at around 300 Ma take place within the tectonic doming associated to magmatic intrusions in the core of antiformal structures. Local ductile to brittle normal faulting is coeval to Upper Carboniferous intracontinental basins opening.  相似文献   

7.
以喜马拉雅山系为典型实例,究竟是气候作用还是构造作用引起山体隆升的问题已经成为地球系统科学研究中的重要前沿问题.无论是气候因素还是构造因素引起山体隆升,二者都与一个共同的地表过程--剥蚀作用相关,剥蚀作用对山体中地质体的影响可以用岩石矿物经历的热史演化来描述,所以,在造山作用研究中,山体或山脉的热史演化是揭开地质体经历地质过程、山体隆升研究的重要途径.利用河砂组成矿物来研究流域的地质过程和构造演化已经成为现代地质科学的重要手段.本文采集了雅鲁藏布江下游墨脱县以南约50 km处地东河段内的现代河砂,对其中的角闪石、白云母、黑云母及钾长石等四种矿物进行了高精度单颗粒激光40Ar/39Ar年代学测试,并进行了概率统计.地东河段河砂中富钾矿物40Ar/39Ar年代学统计结果显示,大峡谷流域的热史演化可以确定有多个阶段,分别可以识别出70~69、61~60、43~42、35~34、26~25、25~23、22~20、20~18、17~14、12~11、8~6、5~4及<2Ma等13个热史演化阶段.通过将上述热史信息与印度大陆与欧亚大陆碰撞角度和碰撞速率变化曲线的对比,可以确定70~69、61~60、43~42、35~34、22~20和12~11Ma等6个阶段的年代学信息是两大陆碰撞角度和碰撞速率变化事件在东喜马拉雅构造结热史上的记录;通过与全球深海氧、碳同位素记录曲线的对比,可以认为26~25、25~23、17~14、8~6、5~4和<2Ma等6个阶段的年代学信息是气候变化在东喜马拉雅构造结热史上的记录.东喜马拉雅构造结地质体热史演化是构造与气候相互作用的结果.  相似文献   

8.
《Chemical Geology》2002,182(2-4):583-603
New K/Ar ages based on 40Ar/39Ar incremental heating of <2- and 2–20-μm size fractions of the well-characterized, carbonate-bearing Heinrich layers of core V28-82 in the eastern North Atlantic are 846–1049 Ma, overlapping with conventional K/Ar ages from the same Heinrich layers on the Dreizack seamounts of 844–1074 Ma. This agreement suggests the equivalence of the methods in fine-grained terrigenous sediments. Additionally, Heinrich layer H2 yielded a 40Ar/39Ar-based K/Ar age of 970±4 from Orphan Knoll in the southern Labrador Sea, within the range found in eastern North Atlantic Heinrich layers. Thus, the K/Ar data are robust in their indication of a dominant Labrador Sea ice-rafted source to even the finest sediment fraction in the eastern North Atlantic during the massive detrital carbonate-bearing Heinrich events of the last glacial cycle (H1, H2, H4, H5). Close correspondence of the radiogenic argon concentration (40Ar*) from the de-carbonated <63-μm fractions from V28-82 with the <2- and 2–16-μm fractions from the Driezack seamounts demonstrates that this measurement is a rapid and reliable method for correlating these layers within their belt of distribution.A 40Ar/39Ar-based K/Ar age of 433±5 million years for H11 in V28-82 is within the range of published data from background sediments in the eastern North Atlantic, and is consistent with published results across this interval in the Driezack seamounts. In contrast, the 40Ar/39Ar-based K/Ar age of H11 in the western Atlantic core EW9303-JPC37 is 614±5 million years. A brick red sample from approximately the interval of H3 of core EW9303-GGC40 yielded a 40Ar/39Ar-based K/Ar age of 567±1 million years, comparable to the published range of 523–543 Ma from the 2–16-μm fractions from that interval on the Dreizack seamounts. Both JPC37 and GGC40 are located in the path of the North Atlantic Drift. The older ages from western samples of H3 and H11 may result from dilution of a Hudson Strait source or an elevated age from southeastern Laurentide sources.  相似文献   

9.
Four K-feldspar samples from the Yidun Arc, eastern Tibetan Plateau, were analysed by the 40Ar/39Ar method with the aim of recovering information on their thermal history using multiple diffusion domain (MDD) theory. Arrhenius plots for each of the samples reveal low retentivity early in the heating experiments, a property that is attributed to their recrystallised nature. This low argon retentivity appears to violate the MDD assumption that volume diffusion is the only mechanism for argon transport within the crystals, thus the thermal histories derived from these analyses are considered suspect. Nevertheless, the age spectra themselves suggest that the majority of samples had cooled below ∼200 °C prior to the Eocene collision of India with Asia. Thermal history modelling from apatite fission track analyses from the same and nearby samples shows slow cooling through the apatite fission track partial annealing zone during the Cenozoic in samples from the high elevation, low relief areas of the Yidun Arc, while samples from the major Jinsha River valley show rapid cooling through the partial annealing zone beginning in the Miocene. These results suggest that significant Cenozoic denudation has been localised and that most parts of the Yidun Arc have experienced very little denudation during the Cenozoic.  相似文献   

10.
New single‐grain 40Ar/39Ar detrital white‐mica ages from the Lulehe section at the eastern Qaidam Basin yield uniform Permian ages between 250 ± 3 and 279 ± 3 Ma throughout the whole Cenozoic sequence. This is inconsistent with the present hinterland, which is composed of early Palaeozoic metamorphic units with subordinate early Palaeozoic and few Permian granites. The new data indicate that Permian tectonic units are likely more widespread at the north‐eastern margin of the Tibetan plateau as known at present, particularly within the Qilian Mountains. The preferred explanation is that the Qaidam block represents a rigid indenter, which indented during late Tertiary times into early Palaeozoic orogenic units. This is consistent with recent findings of a NW‐trending sinistral Permian ductile shear zone and a dextral, NW‐trending Tertiary fault system close to the north‐eastern margin of the Qaidam Basin.  相似文献   

11.
The 40Ar/39Ar method with stepwise heating was used to date phengite and glaucophane in the contact zone of garnet glaucophanite an omphacite-garnet rock (eclogite) from the lower unit of the Maksyutov metamorphic complex. The correlation of the measured age and the sizes of the phengite flakes indicates that the behavior of radiogenic Ar in them was controlled by the mechanisms of volumetric diffusion. Taking into account the fact that all of the rocks have the same thermal history, the dates most close to the age of metamorphism are those of the largest phengite flakes from garnet glaucophanite: 392 Ma. The age values obtained on phengite from an omphacite-garnet rock sampled at the maximum distance from the contact are equal to 378 Ma and correspond to the time when the rocks cooled to temperatures below 350°C. The results of numerical simulations indicate that the metamorphic age is no younger than 400 Ma, and the linear cooling rate can be estimated at 3.40 ?0.75/+1.24°C/m.y. The maximum values of the phengite ages are consistent with the dates of glaucophane from three rock samples: 389–411 Ma.  相似文献   

12.
段亮 《地质通报》2010,29(1):70-78
对喜马拉雅前陆盆地和孟加拉海扇中各地层的碎屑白云母40Ar/39Ar资料的系统分析揭示了喜马拉雅造山带自印度-欧亚板块碰撞开始造山以来的整个剥落历史: 剥落速率开始较为稳定,然后开始上升,在22Ma左右达到峰值,为4~5mm/a,随后急剧下降,最终以2mm/a的速率保持平稳。喜马拉雅造山带与青藏高原周缘剥落历史的对比约束了印度-欧亚板块碰撞造成青藏高原东缘和北缘的不同反应方式。即开始时的挤压主要被青藏高原北缘的大规模左旋走滑吸收, 到30Ma左右,喜马拉雅造山带冷却、剥落速率显著增强,北缘左旋走滑造成的柴达木地块的向东运动被华北板块阻挡而停滞,因此在北缘发生了一些重要的冷却和抬升剥落事件。至18Ma左右,喜马拉雅造山带的冷却、剥落速率继续增高并维持在较高水平,而该时间段内无论是北缘还是东缘,均未发生显著的抬升剥落事件,因此青藏高原的整体隆升和地壳增厚可能发生在此期间。中新世末—上新世初开始至今,青藏高原东缘龙门山地区发生了一些显著的抬升剥落事件,导致了大量的山崩和河流侵蚀,即此时来自喜马拉雅的挤压主要被青藏高原向东方向的地壳逃逸所吸收。  相似文献   

13.
In order to test their chronometric potential, 40Ar/39Ar stepheating- (and 4He-) analyses have been carried out on five manganese ore minerals of the hollandite-cryptomelane series from three Precambrian manganese deposits (Ultevis/Sweden, Sitapar/India, Bachkoun/Morocco). Samples from the metamorphic occurrences Ultevis and Sitapar yielded Ar ages of 1.8 Ga and 0.95 Ga, interpreted as the age of postmetamorphic cooling (Hollandites/Ultevis) and of an early, K-introducing alteration process subsequent to amphibolite facies metamorphism (cryptomelanes/Sitapar). Both data are consistent with known chronologies of the Svecokarelian and Satpura orogenic cycles. A date of 670 Ma obtained for a hollandite from a volcanogenic vein deposit (Bachkoun), however, contrasts with published extrusion ages of 580–560 Ma for the volcanic host rocks (Ouarzazate Series), probably due to incorporation of excess argon. The use of the 40Ar/39Ar technique, together with multiple isotope systematics, made it nevertheless possible to establish a reasonable estimate of a mineralization age close to 580 Ma. Measurement of fractional Ar losses during vacuum step heating (500–1600 °C), although indicating good Ar retentivities, failed to define model diffusion parameters because of non-linear Arrhenius arrays. Helium diffusion results (200–1200 °C) indicated retention of radiogenic 4He by the samples, corroborated by U/He mineral dates between 0.96 and 0.31 Ga. Potassium-bearing manganese oxides are therefore able to retain argon (possibly also 4He) through geological times and may thus provide ages of ore-forming processes (and perhaps later cooling and alteration stages).  相似文献   

14.
段亮 《地质通报》2010,29(01):70-78
对喜马拉雅前陆盆地和孟加拉海扇中各地层的碎屑白云母40Ar/39Ar资料的系统分析揭示了喜马拉雅造山带自印度-欧亚板块碰撞开始造山以来的整个剥落历史: 剥落速率开始较为稳定,然后开始上升,在22Ma左右达到峰值,为4~5mm/a,随后急剧下降,最终以2mm/a的速率保持平稳。喜马拉雅造山带与青藏高原周缘剥落历史的对比约束了印度-欧亚板块碰撞造成青藏高原东缘和北缘的不同反应方式。即开始时的挤压主要被青藏高原北缘的大规模左旋走滑吸收, 到30Ma左右,喜马拉雅造山带冷却、剥落速率显著增强,北缘左旋走滑造成的柴达木地块的向东运动被华北板块阻挡而停滞,因此在北缘发生了一些重要的冷却和抬升剥落事件。至18Ma左右,喜马拉雅造山带的冷却、剥落速率继续增高并维持在较高水平,而该时间段内无论是北缘还是东缘,均未发生显著的抬升剥落事件,因此青藏高原的整体隆升和地壳增厚可能发生在此期间。中新世末—上新世初开始至今,青藏高原东缘龙门山地区发生了一些显著的抬升剥落事件,导致了大量的山崩和河流侵蚀,即此时来自喜马拉雅的挤压主要被青藏高原向东方向的地壳逃逸所吸收。  相似文献   

15.
Long-lived intra-oceanic arcs of Izu-Bonin-Marianas (IBM)-type are built on thick, granodioritic crust formed in the absence of pre-existing continental crust. International Ocean Discovery Program Expedition 350, Site U1437, explored the IBM rear arc to better understand continental crust formation in arcs. Detailed petrochronological (U–Pb geochronology combined with trace elements, oxygen and hafnium isotopes) characterizations of zircon from Site U1437 were carried out, taking care to exclude potential contaminants by (1) comparison of zircon ages with ship-board palaeomagnetic and biostratigraphic ages and 40Ar/39Ar geochronology, (2) analysing zircon from drill muds for comparison, (3) selectively carrying out in situ analysis in petrographic thin sections, and (4) minimizing potential laboratory contamination through using pristine equipment during mineral separation. The youngest zircon ages in Site U1437 are consistent with 40Ar/39Ar and shipboard ages to a depth of ~1390 m below sea floor (mbsf) where Igneous Unit Ig 1 yielded an 40Ar/39Ar age of 12.9 ± 0.3 Ma (all errors 2σ). One single zircon (age 15.4 ± 1.0 Ma) was recovered from the deepest lithostratigraphic unit drilled, Unit VII (1459.80–1806.5 mbsf). Site U1437 zircon trace element compositions are distinct from those of oceanic and continental arc environments and differ from those generated in thick oceanic crust (Iceland-type) where low-δ18O evolved melts are produced via re-melting of hydrothermally altered mafic rocks. Ti-in-zircon model temperatures are lower than for mid-ocean ridge rocks, in agreement with low zircon saturation temperatures, suggestive of low-temperature, hydrous melt sources. Zircon oxygen (δ18O = 3.3–6.0‰) and hafnium (εHf = + 10–+16) isotopic compositions indicate asthenospheric mantle sources. Trace element and isotopic differences between zircon from Site U1437 rear-arc rocks and the Hadean detrital zircon population suggest that preserved Hadean zircon crystals were probably generated in an environment different from modern oceanic convergent margins underlain by depleted mantle.  相似文献   

16.
采用激光阶段加热40Ar/39Ar定年技术,选取柴北缘超高压变质带鱼卡地体超高压变质岩及其围岩的6个多硅白云母进行了Ar同位素分析,获得丰富年代学数据。榴辉岩和云母斜长角闪岩多硅白云母具有高Si、高Mg含量的特征,阶段加热给出复杂的表观年龄图谱,总气体年龄(708~534 Ma)和等时年龄(681~513 Ma)都明显老于区内榴辉岩锆石U Pb年龄,暗示样品含大量外来40Ar。相比之下,围岩花岗质片麻岩和白云母石英片岩多硅白云母具有相对低Si高Fe的特征,阶段加热给出平坦的40Ar/39Ar年龄谱,对应坪年龄分别为454和418 Ma。构成年龄坪的数据点形成了线性关系良好的反等时线,并获得同坪年龄一致的等时年龄,能与区域地质年龄很好地吻合。坪年龄454 Ma解释为花岗质片麻岩冷却到约400 ℃时的时间,同时也代表了鱼卡变质岩在经历了深俯冲超高压变质作用后,从上地幔折返抬升至中上地壳深度的时限;片岩多硅白云母坪年龄418 Ma纪录的则是区内一次强韧性剪切事件发生的时代。考虑到榴辉岩和斜长角闪岩原岩为变基性玄武岩类,其主要含钾矿物角闪石的Ar封闭稳定性较高,同时在超高压变质过程中,它们处在一个相对封闭和缺乏流体活动的极端地质环境,所以认为鱼卡榴辉岩多硅白云母外来40Ar来自原岩而非后期渗入的流体,属于“继承”40Ar的范畴。  相似文献   

17.
江思宏  聂凤军 《岩石学报》2006,22(11):2719-2732
首次对北山地区的乌珠尔嘎顺、额勒根、雀儿山、黑鹰山、狼娃山、明水和石板井等花岗岩体开展了高精度40Ar/39Ar同位素年代测定,共分析了10件样品,其中有6件获得了比较可靠的40Ar/39Ar同位素年龄数据,基本能够代表岩体的侵位年龄,分别为352.3±3.8Ma、271.76±0.88Ma、286.2±3.4Ma、272.0±4.7Ma、294.1±2.9Ma和255.2±4.1Ma;其他4件样品尽管受后期热扰动较为强烈,但是也能够获得一些有价值的年龄信息.另外,受后期构造-热事件的影响,本文有6件样品发生了不同程度的Ar丢失,其中样品NSS01-13钾长石Ar丢失最为严重,不能获得可靠的年龄,其他样品发生Ar丢失的时间主要集中在燕山期,少量在印支期.获得的这些40Ar/39Ar测年数据与已经发表的其他40Ar/39Ar测年数据记录下了北山地区多期次的构造-岩浆侵入活动事件.根据这些年龄数据,可以将北山地区自海西中期以来的岩浆活动归纳为5个阶段,分别是①330~360Ma,海西中期花岗岩类侵入活动;②270~310Ma,与西伯利亚、哈萨克斯坦和塔里木三大板块碰撞的时间同期或稍晚的花岗岩类侵入活动;③250~270Ma,明显晚于主碰撞发生的时间,为海西晚期碰撞后花岗岩类侵入活动;④210~250Ma,印支期构造-岩浆活动;⑤169~195Ma,燕山早期岩浆活动.其中270~310Ma同碰撞期花岗岩类最为发育,分布范围最广.尽管北山地区从前寒武纪到燕山期花岗岩类均有产出,但是规模最大、影响范围最广的岩浆侵入活动发生在海西晚期,反映了海西晚期西伯利亚、哈萨克斯坦和塔里木三大板块碰撞对接的构造事件.印支期和燕山期花岗岩类可能是在统一大陆形成之后由陆内强烈活化形成的.北山地区花岗岩类的高精度年代学测量可以构筑本区花岗岩类时空演化的精细格架,对于重塑本区大地构造演化历史、指导区域金属矿床的寻找具有重要的意义.  相似文献   

18.
Detailed field and microstructural studies have been combined with high spatial resolution ultraviolet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related microstructure and Ar isotope systematics. The sample studied is a ~1,000 Ma Torridonian arkose from Skye, Scotland, that contains detrital feldspars previously metamorphosed at amphibolite-facies conditions ~1,700 Ma. The sample was subsequently deformed ~430 Ma ago during Caledonian orogenesis. The form and distribution of deformation-induced microstructures within three different feldspar clasts has been mapped using atomic number contrast and orientation contrast imaging, at a range of scales, to identify intragrain variations in composition and lattice orientation. These variations have been related to thin section and regional structural data to provide a well-constrained deformation history for the feldspar clasts. One hundred and forty-three in-situ 40Ar/39Ar analyses measured using ultraviolet laser ablation record a range of apparent ages (317-1030 Ma). The K-feldspar showing the least strain records the greatest range of apparent ages from 420-1,030 Ma, with the oldest apparent ages being found close to the centre of the feldspar away from fractures and the detrital grain boundary. The most deformed K-feldspar yields the youngest apparent ages (317-453 Ma) but there is no spatial relationship between apparent age and the detrital grain boundary. Within this feldspar, the oldest apparent ages are recorded from orientation domain boundaries and fracture surfaces where an excess or trapped 40Ar component resides. Orientation contrast images at a similar scale to the Ar analyses illustrate a significant deformation-related microstructural difference between the feldspars and we conclude that deformation plays a significant role in controlling Ar systematics of feldspars at both the inter- and intragrain scales even at relatively low 'bulk' strains. The data show that Ar loss and trapping within the deformed K-feldspars reflects the presence of a deformation-induced population of small diffusion domains in combination with 'short-circuit' diffusion along deformation-induced defects. The complex history of microstructures induced in the K-feldspars during their cooling, alteration, erosion and sedimentation do not appear to be as significant as deformation-induced microstructures in controlling the distribution of apparent ages at the grain scale.  相似文献   

19.
吴皓然 《地质与勘探》2022,58(4):798-808
内蒙古沙麦钨矿床位于中亚造山带东段(或称兴蒙造山带),矿体主要赋存在黑云母二长花岗(斑)岩内,主要矿化类型为伟晶岩型和云英岩型。本文利用40Ar/39Ar同位素测年方法对沙麦钨矿成矿阶段形成的白云母进行了年龄测定,获得白云母Ar-Ar坪年龄为138.4 ± 0.84 Ma,对应的正、反等时线年龄分别为137.32 ± 0.73 Ma和137.35 ± 0.73 Ma。所测坪年龄与正反等时线年龄具有很好的一致性,可以代表矿床钨矿体的形成年龄,表明该矿床的形成与沙麦地区燕山晚期的岩浆活动有关,这与区域上的成矿事件相吻合。结合区域地球动力学背景的研究成果,认为沙麦钨矿床形成于陆-陆碰撞造山后的陆内伸展环境。  相似文献   

20.
40Ar/39Ar plateau ages of biotite, plagioclase, K-feldspar and hornblende from the Biluoxueshan and Lincang plutons in the three-river area of Yunnan and the Quxu pluton in the Gandise belt of Xizang indicate that the three plutons were emplaced at 420, 234 and 43.4 Ma, respectively. Based on the study of closure temperatures and thermal histories, it is shown that the Lincang and Biluoxueshan plutons experienced the same thermodynamic event during 85–90 Ma, temporally representing the collision between the Sundaland and Eurasian plates, and that the Quxu pluton was uplifted at a much faster rate during 40–44 Ma(2.6 mm/a), marking the collision between the Indian and Eurasian plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号