首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jean-Luc Epard  Albrecht Steck   《Tectonophysics》2008,451(1-4):242-264
A continental subduction-related and multistage exhumation process for the Tso Morari ultra-high pressure nappe is proposed. The model is constrained by published thermo-barometry and age data, combined with new geological and tectonic maps. Additionally, observations on the structural and metamorphic evolution of the Tso Morari area and the North Himalayan nappes are presented. The northern margin of the Indian continental crust was subducted to a depth of > 90 km below Asia after continental collision some 55 Ma ago. The underthrusting was accompanied by the detachment and accretion of Late Proterozoic to Early Eocene sediments, creating the North Himalayan accretionary wedge, in front of the active Asian margin and the 103–50 Ma Ladakh arc batholith. The basic dikes in the Ordovician Tso Morari granite were transformed to eclogites with crystallization of coesite, some 53 Ma ago at a depth of > 90 km (> 27 kbar) and temperatures of 500 to 600 °C. The detachment and extrusion of the low density Tso Morari nappe, composed of 70% of the Tso Morari granite and 30% of graywackes with some eclogitic dikes, occurred by ductile pure and simple shear deformation. It was pushed by buoyancy forces and by squeezing between the underthrusted Indian lithosphere and the Asian mantle wedge. The extruding Tso Morari nappe reached a depth of 35 km at the base of the North Himalayan accretionary wedge some 48 Ma ago. There the whole nappe stack recrystallized under amphibolite facies conditions of a Barrovian regional metamorphism with a metamorphic field gradient of 20 °C/km. An intense schistosity with a W–E oriented stretching lineation L1 and top-to-the E shear criteria and crystallization of oriented sillimanite needles after kyanite, testify to the Tso Morari nappe extrusion and pressure drop. The whole nappe stack, comprising from the base to top the Tso Morari, Tetraogal, Karzok and Mata–Nyimaling-Tsarap nappes, was overprinted by new schistosities with a first N-directed and a second NE-directed stretching lineation L2 and L3 reaching the base of the North Himalayan accretionary wedge. They are characterized by top-to-the S and SW shear criteria. This structural overprint was related to an early N- and a younger NE-directed underthrusting of the Indian plate below Asia that was accompanied by anticlockwise rotation of India. The warping of the Tso Morari dome started already some 48 Ma ago with the formation of an extruding nappe at depth. The Tso Morari dome reached a depth of 15 km about 40 Ma ago in the eastern Kiagar La region and 30 Ma ago in the western Nuruchan region. The extrusion rate was of about 3 cm/yr between 53 and 48 Ma, followed by an uplift rate of 1.2 mm/yr between 48 and 30 Ma and of only 0.5 mm/yr after 30 Ma. Geomorphology observations show that the Tso Morari dome is still affected by faults, open regional dome, and basin and pull-apart structures, in a zone of active dextral transpression parallel to the Indus Suture zone.  相似文献   

2.
This study provides new 40Ar/39Ar geochronological constraints on the age of the Alpine tectonics in the Aspromonte Massif (southern part of the Calabrian–Peloritan belt). This massif exposes the upper units of the Calabride Complex which originated from the European continental margin. The Calabride Complex was incorporated in the Alpine orogenic wedge and then integrated into the Apennines and Maghrebides fold-and-thrust belts. Throughout the Calabride Complex there is evidence for a two stage tectonic history, which remains however rather poorly dated: Alpine nappe stacking is followed by extensional reworking along the former thrust contacts or along new detachment surfaces. Our new ages suggest that exhumation of the uppermost units, which accompanied nappe stacking, probably started at 45 Ma and that the deepest units were almost completely exhumed at 33 Ma. This kinematics probably corresponds to syn-orogenic extension while the end of exhumation is clearly related to the extensional tectonics dated at 28.6 Ma along detachment structures.Our geochronological data reveal a very short lag time between accretional and extensional processes in this part of the Mediterranean Alpine orogenic belt. The direction of extension, when the units are restored to their initial position (i.e. before the opening of the Western Mediterranean basins and the bending of the arc) is NNE–SSW. Such a direction does not fit with the eastward slab-retreat model generally put forward to explain extension in the Western Mediterranean. In contrast, we provide evidence for roughly N–S middle Oligocene extension in the accretionary prism, not previously described in this part of the Mediterranean domain.  相似文献   

3.
Suture zones often archive complex geologic histories underscored by episodes of varying style of deformation associated with intercontinental collision. In the Lopukangri area of south-central Tibet (29°54′N, 84°24′E) field relationships between tectonic units juxtaposed by the India–Asia suture are well exposed, including Indian passive margin rocks (Tethyan Sedimentary Sequence), forearc deposits (Xigaze Group), magmatic arc rocks (Gangdese batholith and Linzizong Formation) and syncollision deposits (Eocene–Miocene conglomerates). To better understand the structural history of this area, we integrated geologic mapping with biotite 40Ar/39Ar thermochronology and zircon U–Pb geochronology. The first-order structure is a system of north-directed thrusts which are part of the Great Counter thrust (GCT) that places Indian passive margin rocks and forearc deposits on top of magmatic arc rocks and syn-tectonic conglomerates. We infer the south-directed Late Oligocene Gangdese Thrust (GT) exists at unexposed structural levels based on field mapping, cross sections, and regional correlations as it has been documented immediately to the east. A granite in the footwall has a U–Pb zircon age of 38.4 ± 0.4 Ma, interpreted to be the age of emplacement of the granite, and a younger 40Ar/39Ar biotite age of 19.7 ± 0.1 Ma. As the granite sample is situated immediately below a nonconformity with low grade greenschist facies rocks, we interpret the younger age to reflect Miocene resetting of the biotite Ar system. Syn-tectonic deposits in the Lopukangri area consist of three conglomerate units with a total thickness of ∼1.5 km. The lower two units consist of cobble gravel pebble conglomerates rich in volcanic and plutonic clasts, transitioning to conglomerates with only sedimentary clasts in the upper unit. We correlate the syncollision deposits to the Eocene–Oligocene Qiuwu Formation based on field relationships, stratigraphy and petrology. Petrology and clast composition suggest the lower two units of the Qiuwu Formation had a northern provenance (Lhasa block and magmatic arc) and the upper unit had a southern provenance (Tethyan Sedimentary Sequence). Our observations are consistent with paleocurrent data from other studies which suggest a predominant south-directed paleoflow for this formation. We propose a model in which: (1) granites intrude at 38.4 ± 0.4 Ma; (2) are exhumed by erosion; (3) and buried due to regional subsidence and initial deposition of a conglomerate unit; (4) exposed by the GT at ∼27–24 Ma to provide detritus; (5) buried a second time by hanging wall-derived sedimentary deposits and the GCT, then (6) exposed from a depth of ∼12–10 km by a blind thrust at ∼19 Ma. An alternate model describes: (1) intrusion of the granites at 38.4 ± 0.4 Ma, followed by (2) exhumation of the granites via normal faulting to provide detritus; (3) then burial by the GCT at ∼24 Ma, followed by (4) exhumation via regional erosional denudation at ∼19 Ma. Exposure of the GT west of Xigaze has not been confirmed. We suggest that shallower structural levels of the India-Asia suture zone are exposed to the west of the study area, compared to the east, where the GT has been previously documented. The GCT in the area is short-lived, as it is cut and offset by a Middle Miocene ∼N-striking W-dipping oblique normal fault system.  相似文献   

4.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab.  相似文献   

5.
Within the Namche Barwa area, SE Tibet, the Indus–Yarlung suture zone separates the Lhasa terrain in the north from the Himalayan unit including the Tethyan (sedimentary and volcanic rocks), Dongjiu (greenschist to lower amphibolite facies), Namche Barwa (granulite facies), Pei (amphibolite facies) and Laiguo (greenschist facies) sequences in the south. Two fault systems were distinguished in the Namche Barwa area. The former includes a top-down-to-the-north normal fault in the north and two top-to-the-south thrust zones in the south named as Upper and Lower Thrusts, respectively. The Namche Barwa and Pei sequences were exhumed southwards from beneath the Dongjiu sequence by these faults. Thus, the fault system is regarded as a southward extrusion structure. Subsequently, the exposed Dongjiu, Namche Barwa, Pei and Laiguo sequences were displaced northwards onto the Lhasa terrain by the top-to-the-north fault system, thus, marking it as northward indentation structure. Monazite TIMS U–Pb dating demonstrates that the normal fault and the Lower Thrust from the southward extrusion system were probably active at ~ 6 Ma and ~ 10 Ma, respectively. Zircon U–Pb SHRIMP and phlogopite K–Ar ages further suggest that the Upper Thrust was active between 6.2 ± 0.2 Ma and 5.5 ± 0.2 Ma. The northward indentation structures within the core portion of the eastern Himalayan syntaxis were perhaps active between 3.0 Ma and 1.5 Ma, as inferred by published zircon U–Pb SHRIMP and hornblende Ar–Ar ages. The monazite from upper portions of the Pei sequence dated by U–Pb TIMS indicates that the precursor sediments of this sequence were derived from Proterozoic source regions. Nd isotopic data further suggest that all the metamorphic rocks within eastern Himalaya (εNd = ? 13 to ? 19) correlate closely with those from the Greater Himalayan Sequences, whereas the western Himalayan syntaxis is mainly comprised of Lesser Himalayan Sequences. The two indented corners of the Himalaya are, thus, different.  相似文献   

6.
A 40Ar/39Ar geochronological study was performed on amphibole and biotite from some representative units of distinct tectonic domains of the southeastern Guiana Shield, north of the Amazonian Craton, the Amapá Block and the Carecuru Domain. In the Amapá Block, an Archean continental block involved in the Transamazonian orogenesis (2.26–1.95 Ga), the investigated minerals, from rocks of the Archean high-grade basement assemblage, give only Paleoproterozoic ages, indicating their complete resetting during the Transamazonian orogenic event. Amphibole ages vary from 2087 ± 3 to 2047 ± 20 Ma, and biotite ages spread mainly between 2079 ± 18 and 2033 ± 13 Ma. In the Carecuru Domain, in which the geodynamic evolution is related to Paleoproterozoic magmatic arc setting during the Transamazonian event, calc-alkaline granitoids yield amphibole age of 2074 ± 17 Ma, and biotite ages of 1928 ± 19 Ma and 1833 ± 13 Ma.These data reinforce the importance of the Transamazonian orogenic cycle in the investigated area, and indicate that the rocks were not significantly affected by post-Transamazonian events. When coupled with available U–Th–Pb monazite and Pb–Pb zircon geochronological records and petro-structural observations, the new 40Ar/39Ar data delineate contrasting cooling and exhumation histories for the tectonic domains. In the Amapá Block, the data suggest nearly vertical Tt paths that reflect fast cooling rates, which indicate tectonically controlled exhumation, related to collisional stages of the Transamazonian event, between 2.10 and 2.08 Ga. Conversely, in the Carecuru Domain, low cooling rates suggest that the arc-related granitoids underwent slow and monotonous cooling since their emplacement until reaching the biotite isotopic closure temperature.  相似文献   

7.
Between the Qiangtang Block and Yalung-Zangpo Suture Zone in the south-central Tibetan Plateau, the following geological units and suture zones have been identified from south to north: the Gangdese Granitic Belt, the Lhasa Block, the Nyainqentanghla Shear Zone, the Dangxiong–Sangxiong Tectono-granitic Belt and the Bangong–Nujiang Suture Zone. To better constrain the tectonic evolution and cooling histories of these units, 40Ar/39Ar muscovite, biotite and K-feldspar, as well as apatite fission track dating and thermochronological analysis have been carried out. The analytical results indicate that the south-central Tibetan Plateau, with the exception of the Nyainqentanghla Shear Zone, provides a record of three cooling stages at 165–150, 130–110 and ∼45–35 Ma. Fission-track data modelling also indicates that the stages of cooling were different in the different tectonic belts or blocks. Very different cooling phases occurred in the south-central Tibetan Plateau, compared with southern Tibet, as well as along the Yalung–Zangpo Suture Zone. There is no thermochronological evidence to indicate that the south-central part of Tibetan Plateau was influenced by the underthrusting of Indian Plate.The three-stage cooling history and the stages of tectonic exhumation were controlled completely by the closure of the Bangong–Nujiang Suture Zone along its eastern segment during Middle–Late Jurassic (165–150 Ma) and its western segment in the Early–Late Cretaceous (130–110 Ma), as well as by the collision between the Indian and Asian plates in the Paleogene (45–35 Ma).  相似文献   

8.
The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW–SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW–SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE–WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480–525 °C at 2–4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660–580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle–ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement along transcurrent shear zones and low angle normal ductile shear zones and consequently, development and exhumation of Sibai core complex.  相似文献   

9.
Relict omphacite inclusions have been discovered in mafic granulite at Dinggye of China, confirming the existence of eclogite in central Himalayan orogenic belt. Detailed petrological studies show that relict omphacite occur as inclusions in both garnets and zircons, and the peak mineral assemblage of eclogite-facies should be garnet, omphacite, rutile, muscovite and quartz which was strongly overprinted by granulite-facies minerals during the exhumation. Phase equilibria modeling and associated geothermometer predict that the minimum P–T conditions for peak eclogite-facies stage are 720–760 °C and 20–21 kbar, and those of overprinted granulite-facies are 750 °C and 7–9 kbar in water-undersaturated condition. Thus, a near isothermal decompression P–T path for central Himalayan eclogite has been obtained. Zircon SHRIMP U–Pb dating of two studied eclogite samples at Dinggye yields the peak metamorphic ages of 13.9 ± 1.2 Ma and 14.9 ± 0.7 Ma, respectively, which indicates that the Dinggye eclogite should be the youngest eclogite in Himalayan orogenic belt. Geochemical characteristics and zircon analyses show that the protoliths of eclogite in Dinggye are predicted to be continental rift-related basaltic rocks. The eclogite at Dinggye in central Himalaya should be formed by the crustal thickening during the long-lasting continental overthrusting by Indian plate beneath Euro-Asian continent, and its exhumation process may be related with channel flow and orogen-parallel extension. In the middle Miocene (~ 14 Ma), Indian continental crust had reached at least ~ 65 km depth in southern Tibet.  相似文献   

10.
40Ar/39Ar dating studies have been carried out along the Dangjin Pass transect across the Altyn Strike-Slip Fault (ASSF). The samples gave ages of 445.2–454.3 Ma in the Northern Belt, 164.3–178.4 Ma in the Mesozoic Shear Zone and 26.3–36.4 Ma in the Cenozoic Shear Zone. Using the piercing point of the Bashikaogong Fault and the Cangma-Heihe Fault an offset of 350–400 km along the ASSF has been estimated. The 40Ar/39Ar dating of the syntectonic-growth or syntectonic-resetting minerals from the samples within the ASSF belt, and offset estimations from different age piercing points suggest that the ASSF should be initiated in the Middle Jurassic (178.4–160 Ma). Combined with previously reported ages, our studies show that the ASSF is characterized by multi-phase re-activation during 85–100, 25-40 and 8–10 Ma following its initiation in the Middle Jurassic in the regional tectonic setting of convergence between the Indian and Eurasian continents.  相似文献   

11.
A complete thermal history for the Qulong porphyry Cu–Mo deposit, Tibet is presented. Zircon U–Pb geochronology indicates that the mineralization at Qulong resulted from brecciation-veining events associated with the emplacement of a series of intermediate-felsic intrusions. Combined with previously published ages, our results reveal a whole intrusive history of the Qulong composite pluton. Causative porphyries were emplaced at ~ 16.0 Ma as revealed by 40Ar–39Ar dating of hydrothermal biotite (15.7 ± 0.2 Ma) and sericite (15.7 ± 0.2 Ma). Zircon and apatite (U–Th)/He (ZHe and AHe) dating of Qulong revealed that both followed similar, monotonic thermal trajectories from 900 °C (U–Pb ages: 17.5–15.9 Ma) to 200 °C (ZHe: 15.7–14.0 Ma), and that the causative porphyries experienced faster cooling at a maximum rate of greater than 200 °C/myr. The Qulong deposit was exhumed between 13.6 Ma and 12.4 Ma (AHe) at an estimated rate of 0.16–0.24 mm/y, which is consistent with previous estimates for other Gangdese Miocene porphyry deposits. Our AHe thermochronology results suggest that neither the Gangdese thrust system, nor the Yadong–Gulu graben affected or accelerated exhumation at the Qulong deposit.  相似文献   

12.
The Yanshan Orogenic Belt is located in the northern part of the North China Craton (NCC), which lost ∼120 km of lithospheric mantle during Phanerozoic tectonic reactivation. Mesozoic magmatism in the Yanshan fold-and-thrust belt began at 195–185 Ma (Early Jurassic), with most of the granitic plutons being Cretaceous in age (138–113 Ma). Along with this magmatism, multi-phase deformational structures, including multiple generations of folds, thrust and reverse faults, extensional faults, and strike-slip faults are present in this belt. Previous investigations have mostly focused on geochemical and isotopic studies of these magmatic rocks, but not on the thermal history of the Mesozoic plutons. We have applied 40Ar/39Ar thermochronology to biotites and K-feldspars from several Lower Cretaceous granitic plutons to decipher the cooling and uplift history of the Yanshan region. The biotite 40Ar/39Ar ages of these plutons range from 107 to 123 Ma, indicating that they cooled through about 350 °C at that time. All the K-feldspar step-heating results modeled using multiple diffusion domain theory yield similarly rapid cooling trends, although beginning at different times. Two rapid cooling phases have been identified at ca. 120–105 and 100–90 Ma. The first phase of rapid cooling occurred synchronously with widespread extensional deformation characterized by the formation of metamorphic core complexes, A-type magmatism, large-scale normal faults, and the development of half-graben basins. This suggests rapid exhumation took place in an extensional regime and was a shallow-crustal-level response to lithospheric thinning of the NCC. The second phase of rapid cooling was probably related to the regional uplift and unroofing of the Yanshan Belt, which is consistent with the lack of Upper Cretaceous sediments in most of the Yanshan region.  相似文献   

13.
Xincheng is a world-class orogenic-gold deposit hosted by the Early Cretaceous Guojialing granitoid in the Jiaodong Peninsula, eastern China. A zircon U–Pb age of 126 ± 1.4 Ma, together with previous data, constrain the emplacement of the Guojialing intrusion to 132–123 Ma. The granitoid underwent subsolidus ductile deformation at >500 °C following its intrusion. The small difference in age between the youngest zircon U–Pb age of unaltered granitoid (~123 Ma) and the ca. 120 Ma 40Ar/39Ar ages of sericite, associated with breccias and gold mineralization within it indicate initial rapid cooling from magmatic temperatures to those prevalent during brittle deformation and associated gold mineralization at ~220–300 °C. Evidence of a direct association between granitic magmatism and gold mineralization, such as at least localized near-magmatic depositional temperatures and metal zoning evident in undoubted intrusion-related gold deposits, is absent. The 40Ar/39Ar age of ~120 Ma coincides with the mineralization age of many other orogenic-gold deposits along the Jiaojia Fault. Sixteen zircon fission-track (ZFT) ages across the ore and alteration zones range from 112.9 ± 3.4 to 99.1 ± 2.7 Ma. The long period of cooling to the ~100 Ma ZFT closure temperatures recorded here suggests that ambient temperatures for hydrothermal alteration systems lasted to ~100 Ma, possibly because of their focus at Xincheng within the young Guojialing granitoid as it cooled more slowly below approximately 300 °C to 220 °C. However, the restricted number of auriferous ore stages, combined with the presence of cross-cutting gold-free quartz-carbonate veins, indicate that gold itself was only deposited over a restricted time interval at ~120 Ma, consistent with studies of orogenic gold deposits elsewhere. This highlights the complex interplay between magmatism, deformation and the longevity of hydrothermal systems that cause genetic controversies. Based on apatite fission-track (AFT) ages, the Xincheng gold deposit was then uplifted and exhumed to near the surface of the crust at 15 Ma, probably due to movement on the crustal-scale Tan-Lu Fault. Recognition of such exhumation histories along gold belts has conceptual exploration significance in terms of the probability of discovery of additional exposed or sub-surface gold ore bodies as discovery is as much a function of preservation as formation of the deposits.  相似文献   

14.
The in-situ “chemical” Th–U–Pb dating of monazite with the electron microprobe is used to unravel the Neoproterozoic tectono-thermal history of the “Erinpura Granite” terrane in the foreland of the Delhi Fold Belt (DFB) in the NW Indian craton. These granitoids are variably deformed and show effects of shearing activity. Monazites from the Erinpura granitoids recorded two main events; (1) protolith crystallization at 863 ± 23 Ma and (2) recrystallization and formation of new Th-poor monazite at 775 ± 26 Ma during shear overprint. Some components of the Erinpura granitoids, such as the Siyawa Granite and granites exposed near Sirohi town, show evidence of migmatization. This migmatization event is documented by anatexis and associated monazite crystallization at 779 ± 16 Ma. The age data indicate an overlap in timing between anatectic event and ductile shear deformation. The end of the tectono-thermal event in the Sirohi area is constrained by a 736 ± 6 Ma Ar–Ar muscovite age data from the ductile shear zone.  相似文献   

15.
The amphibolite facies grade North Qinling metamorphic unit forms the centre of the Qinling orogenic belt. Results of LA-ICP-MS U-Pb zircon, 40Ar/39Ar amphibole and biotite dating reveal its Palaeozoic tectonic history. U-Pb zircon dating of migmatitic orthogneiss and granite dykes constrains the age of two possible stages of migmatization at 517 ± 14 Ma and 445 ± 4.6 Ma. A subsequent granite intrusion occurred at 417 ± 1.6 Ma. The 40Ar/39Ar plateau ages of amphibole ranging from 397 ± 33 Ma to 432 ± 3.4 Ma constrain the cooling of the Qinling complex below ca. 540 °C and biotite 40Ar/39Ar ages at about 330–368 Ma below ca. 300 °C. The ages are used to construct a cooling history with slow/non-exhumation during 517– 445 Ma, a time-integrated cooling at a rate < 2.5 °C/Ma during the period of 445–410 Ma, an acceleration of cooling at a rate of 8 °C/Ma from 397 Ma to 368 Ma, and subsequently slow/non-cooling from 368 to 330 Ma. The data show a significant delay in exhumation after peak metamorphic conditions and a long period of tectonic quiescence after the suturing of the North China and South China blocks along the Shangdan suture. These relationships exclude classical exhumation models of formation and exhumation of metamorphic cores in orogens, which all imply rapid cooling after peak conditions of metamorphism.  相似文献   

16.
New thermochronological analyses of granites from the Malay Peninsula record the region’s thermal history during the Late Mesozoic and Cenozoic. 40Ar/39Ar and (U–Th–Sm)/He analyses are combined with existing fission track data to provide a comprehensive set of temperature and time data. Fully and partially reset K-feldspar and biotite mica 40Ar/39Ar analyses indicate a significant period of thermal perturbation between ∼100 and ∼90 Ma, and a second lesser perturbation between ∼51 and ∼43 Ma. Zircon (U–Th–Sm)/He analyses and existing fission track data indicate exhumation of the Malay Peninsula in the Cretaceous, and renewed, localised exhumation in the early Paleogene. Apatite (U–Th–Sm)/He and fission track data indicate rapid exhumation of the region in the Late Eocene and Oligocene. Late Cretaceous tectonism is linked to the reversal of a regional dynamic topographic low following the cessation of subduction along the Sundaland margin in the Late Cretaceous, causing regional uplift and exhumation and the addition of significant heat into the crust via mantle upwelling. Early Paleogene exhumation may reflect the continuation of Cretaceous tectonism or a discrete phase of Paleocene exhumation linked to localised transpressional tectonics. Eocene tectonism is coincident with major subsidence offshore of the Malay Peninsula, interpreted to reflect regional block faulting in response to north–south compression driven by the resumption of subduction along the southern margin of Sundaland in the Eocene.  相似文献   

17.
The Hengshan massif is an exhumed, mid-crustal, plutonic–metamorphic dome formed during Cretaceous crustal extension in the Jiangnan orogenic belt, central South China. Multiple thermochronometers (mica 40Ar/39Ar, apatite fission track and zircon (U–Th)/He) are applied to its footwall along a slip-parallel transect to quantify its thermal history and cooling rate, and the slip magnitude, rate, initial geometry and kinematic evolution of the low-angle Hengshan detachment fault. Our thermochronological data, in conjunction with previous ages, indicate that (1) footwall rocks cooled from ~ 700 °C to ~ 60 °C in less than 60 Myr (136–80 Ma) at variable rates ranging from ~ 50 °C/Myr to ~ 13 °C/Myr, (2) the Hengshan detachment fault accommodated ~ 8–12 km of total slip at variable slip rates from 0.14 to 1 mm/yr during tectonic exhumation, (3) the footwall has been tilted ~ 26°–50° to the east since slip began, indicating that the low-angle Hengshan detachment fault initiated at a steep dip and was passively rotated to a more gentle orientation during subsequent normal slip. This study provides compelling evidence supporting that the low-angle detachment fault in the extensional dome can be generated by the reactivation and passive rotation of an initially steep reverse fault during normal slip. In addition, our thermochronological data constrain the time of extension in the Hengshan dome between 136 and 80 Ma, which implies that the back-arc extension within South China associated with the rollback of the Paleo-Pacific slab might have lasted until at least 80 Ma.  相似文献   

18.
The biostratigraphically constrained Permo-Triassic Emeishan Volcanic Province (EVP), extending over wide areas in southwest China, has been recently considered as a Large Igneous Province contemporaneous with the Siberian Traps and the siliceous tuffs at the P–T boundary in South China. We report the first 40Ar/39Ar ages on this igneous province. Minimum ages have been obtained on phenocrystic plagioclase of the Emeishan basalt, which has undergone a pervasive metamorphism, most likely during subsequent tectonization as a consequence of terrane amalgamation. Comparison between the Ar–release spectra obtained on clear vs. cloudy plagioclase indicates a 40–30 Ma sericite resetting time. A minimum apparent age of 246 ± 4 Ma for plagioclase from a plagiogranite, a late-differentiate of the Panzhihua Layered Complex, and an age of 254 ± 5 Ma for phlogopite from a pyroxenite near Lake Erhai, provide the first absolute age constraint on this igneous province. Additional Ar–Ar age measurements on post-Emeishan alkaline and mafic magmatism yielded 104 ± 2 and 100 ± 2 Ma for an alkaline complex near Panzhihua, and 42 ± 1 Ma for a gabbro sill emplaced near the Ertan Dam. Further study is still needed to determine the age of the Emeishan volcanic emission accurately, and to test the validity of the assumed short duration of the eruption.  相似文献   

19.
The northern Banda Arc, eastern Indonesia, exposes upper mantle/lower crustal complexes comprising lherzolites and granulite facies migmatites of the ‘Kobipoto Complex’. Residual garnet–sillimanite granulites, which contain spinel + quartz inclusions within garnet, experienced ultrahigh-temperature (UHT; > 900 °C) conditions at 16 Ma due to heat supplied by lherzolites exhumed during slab rollback in the Banda Arc. Here, we present U–Pb zircon ages and new whole-rock geochemical analyses that document a protracted history of high-T metamorphism, melting, and acid magmatism of a common sedimentary protolith. Detrital zircons from the Kobipoto Complex migmatites, with ages between 3.4 Ga and 216 Ma, show that their protolith was derived from both West Papua and the Archean of Western Australia, and that metamorphism of these rocks on Seram could not have occurred until the Late Triassic. Zircons within the granulites then experienced three subsequent episodes of growth – at 215–173 Ma, 25–20 Ma, and at c. 16 Ma. The population of zircon rims with ages between 215 and 173 Ma document significant metamorphic (± partial melting) events that we attribute to subduction beneath the Bird's Head peninsula and Sula Spur, which occurred until the Banda and Argo continental blocks were rifted from the NW Australian margin of Gondwana in the Late Jurassic (from c. 160 Ma). Late Oligocene-Early Miocene collision between Australia (the Sula Spur) and SE Asia (northern Sulawesi) was then recorded by crystallisation of several 25–20 Ma zircon rims. Thereafter, a large population of c. 16 Ma zircon rims grew during subsequent and extensive Middle Miocene metamorphism and melting of the Kobipoto complex rocks beneath Seram under high- to ultrahigh-temperature (HT–UHT) conditions. Lherzolites located adjacent to the granulite-facies migmatites in central Seram equilibrated at 1280–1300 °C upon their exhumation to 1 GPa (~ 37 km) depth, whereupon they supplied sufficient heat to have metamorphosed adjacent Kobipoto Complex migmatites under UHT conditions at 16 Ma. Calculations suggesting slight (~ 10 vol%) mantle melting are consistent with observations of minor gabbroic intrusions and scarce harzburgites. Subsequent extension during continued slab rollback exhumed both the lherzolites and adjacent granulite-facies migmatites beneath extensional detachment faults in western Seram at 6.0–5.5 Ma, and on Ambon at 3.5 Ma, as recorded by subsequent zircon growth and 40Ar/39Ar ages in these regions. Ambonites, cordierite- and garnet-bearing dacites sourced predominantly from melts generated in the Kobipoto Complex migmatites, were later erupted on Ambon from 3.0 to 1.9 Ma.  相似文献   

20.
《Gondwana Research》2014,25(3-4):1203-1222
Reactivation of cratonic basement involves a number of processes including extension, compression, and/or lithospheric delamination. The northern margin of the North China Craton (NCC), adjacent to the Inner Mongolian Orogenic Belt, was reactivated in the Late Paleozoic to Early Mesozoic. During this period, the northern margin of the NCC underwent magmatism, N–S compression, regional exhumation, and uplift, including the formation of E–W-trending thick-skinned and thin-skinned south-verging folds and south-verging ductile shear zones. zircon U–Pb SHRIMP ages for mylonite protoliths in shear zones which show ages of 310–290 Ma (mid Carboniferous–Early Permian), constraining the earliest possible age of deformation. Muscovite within carbonate and quartz–feldspar–muscovite mylonites from the Kangbao–Weichang and Fengning–Longhua shear zones defines a stretching lineation and gives 40Ar/39Ar ages of 270–250 Ma, 250–230 Ma, 230–210 Ma, and 210–190 Ma. Deformation developed progressively from north to south between the Late Paleozoic and Triassic. Exhumation of lower crustal gneisses, high-pressure granulites, and granites occurred at the cratonic margin during post-ductile shearing (~ 220–210 Ma). An undeformed Early Jurassic (190–180 Ma) conglomerate overlies the deformed rocks and provides an upper age limit for reactivation and orogenesis. Deformation was induced by convergence between the southern Mongolia and North China cratonic blocks, and the location of this convergent belt controlled later deformation in the Yanshan Tectonic Province. This province formed as older E–W-trending Archean–Proterozoic sequences were reactivated along the northern margin of the NCC. This reactivation has features typical of cratonic basement reactivation: compression, crustal thickening, remelting of the mid to lower crust, and subsequent orogenesis adjacent to the orogenic belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号