首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deccan Traps spread over large parts of south, west and central India, possibly hiding underneath sediments with hydrocarbon potential. Here, we present the results of seismic refraction and wide-angle reflection experiments along three profiles, and analyze them together the results from all other refraction profiles executed earlier in the western part of Narmada–Tapti region of the Deccan Volcanic Province (DVP). We employ travel time modelling to derive the granitic basement configuration, including the overlying Trap and sub-trappean sediment thickness, if any. Travel time skips and amplitude decay in the first arrival refraction data are indicative of the presence of low velocity sediments (Mesozoic), which are the low velocity zones (LVZ) underneath the Traps. Reflection data from the top of LVZ and basement along with the basement refraction data have been used to derive the Mesozoic sediment thickness.In the middle and eastern parts of the study region between Narmada and Tapti, the Mesozoic sediment thickness varies between 0.5 and 2.0 km and reaches more than 2.5 km south of Sendhwa between Narmada and Tapti Rivers. Thick Mesozoic sediments in the eastern parts are also accompanied by thick Traps. The Mesozoic sediments along the present three profiles may not be much prospective in terms of its thickness, except inside the Cambay basin, where the subtrappean sediment thickness is about 1000–1500 m. In the eastern part of the study area, the deepest section (>4 km) has thick (∼2 km) Mesozoic sediments, but with almost equally thick Deccan Trap cover. Results of the present study provide important inputs for future planning for hydrocarbon exploration in this region.  相似文献   

2.
3.
This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India–Seychelles rifting during Late Cretaceous–Early Paleocene, was studied, and the paleostress tensors were deduced. Near N–S trending shear zones, lineaments, and faults were already reported without significant detail. An E–W extension was envisaged by the previous workers to explain the India–Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N–S brittle shear zones and also those faults (sub-vertical, ~NE–SW/~NW–SE, and few ~N–S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N–S to ~NE–SW/~NW–SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW–SE/NE–SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N–S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N–S extension is put forward that refutes the popular view of E–W India–Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE–SW and ~NW–SE, with some ~N–S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of the DLIP erupted. Further studies of magma-rich passive margins with respect to timing and architecture of deformation and emplacement of volcanics are required.  相似文献   

4.
A deep seismic‐reflection transect in western Victoria was designed to provide insights into the structural relationship between the Lachlan and the Delamerian Orogens. Three seismic lines were acquired to provide images of the subsurface from west of the Grampians Range to east of the Stawell‐Ararat Fault Zone. The boundary between the Delamerian and Lachlan Orogens is now generally considered to be the Moyston Fault. In the vicinity of the seismic survey, this fault is intruded by a near‐surface granite, but at depth the fault dips to the east, confirming recent field mapping. East of the Moyston Fault, the uppermost crust is very weakly reflective, consisting of short, non‐continuous, west‐dipping reflections. These weak reflections represent rocks of the Lachlan Orogen and are typical of the reflective character seen on other seismic images from elsewhere in the Lachlan Orogen. Within the Lachlan Orogen, the Pleasant Creek Fault is also east dipping and approximately parallel to the Moyston Fault in the plane of the seismic section. Rocks of the Delamerian Orogen in the vicinity of the seismic line occur below surficial cover to the west of the Moyston Fault. Generally, the upper crust is only weakly reflective, but subhorizontal reflections at shallow depths (up to 3 km) represent the Grampians Group. The Escondida Fault appears to stop below the Grampians Group, and has an apparent gentle dip to the east. Farther east, the Golton and Mehuse Faults are also east dipping. The middle to lower crust below the Delamerian Orogen is strongly reflective, with several major antiformal structures in the middle crust. The Moho is a slightly undulating horizon at the base of the highly reflective middle to lower crust at 11–12 s TWT (approximately 35 km depth). Tectonically, the western margin of the Lachlan Orogen has been thrust over the Delamerian Orogen for a distance of at least 25 km, and possibly over 40 km.  相似文献   

5.
We adopted the seismic tomography technique to refine the three-dimensional velocity structure model of the western part of Hokkaido, Japan. Using the P-wave first arrival data listed by Japan Meteorological Agency from 2002 to 2005, we could estimate a 3-D inhomogeneous velocity structure model with a low velocity at a depth of 14 km beneath Asahikawa. The crustal structure near Sapporo was characterized by lateral velocity change toward the southern seaside. The low-velocity zone near Urakawa, proposed by previous research, was also clarified. In general, the present model showed lower-velocity values for most of the crustal layers in the area concerned. The results of this study were affected by less number of higher magnitude events (M?≥?0.5) in the central part of the area of interest. However, the perturbation results for comparatively shallow layers (6–50 km) were good in resolution. It was found that the source region of the Rumoi–Nanbu earthquake of December 14, 2004 was characterized by a low-velocity zone, located between high velocity zones. Such an inhomogeneous crustal structure might play an important role in the relatively high seismic activity in the Rumoi–Nanbu earthquake source region.  相似文献   

6.
The recordings made during 1972 from large explosions at Kunanalling (W.A.), Mount Fitton (S.A.). and Bass Strait have added considerably to seismic refraction data measured over distances of 1000 km in continental Australia. Taken together with data from the 1956 Maralinga atomic bomb and 1970–71 Ord Dam explosions they show the existence of a refractor with apparent P‐wave velocity in the range 8.26–8.29 km/s, which is interpreted as the Moho under shield regions, at a depth of 34 km under Kalgoorlie and deepening eastward to 39 km under Maralinga. In northern South Australia and farther north and east this refractor is evident as a sub‐Moho refractor at a depth of about 60 km; the Moho refractor is also evident, with an apparent P velocity of 8.04 ± 0.04 km/s at a depth of 40 km. Two computer models (TASS‐1a and 2a) match the observed data. The subsequent arrivals recorded are consistent with the velocity of 8.53 km/s in a refractor at 165 km depth interpreted from the Ord Dam; there is little conclusive evidence for a low‐velocity zone above this depth.  相似文献   

7.
The Outokumpu district within the North Karelia Schist Belt in eastern Finland hosts a number of Cu–Co–Zn–Ni–Ag–Au sulfide deposits that are associated with Palaeoproterozoic ophiolitic metaserpentinites derived from depleted mantle peridotites that were subsequently tectonically interleaved with allochthonous metaturbidites. The metaperidotites have been extensively metasomatized to quartz–carbonate–calc–silicate rocks of the Outokumpu assemblage. The Outokumpu area has been affected by a multiple-phase tectonic history comprising various phases of folding and shearing followed by several faulting events. Future exploration has to expand the search into deeper areas and requires knowledge of the subsurface geology. In order to unravel the complex structure 3D geologic models of different scales have been built using a variety of information including geological aeromagnetic and gravity maps, digital terrain models, and mine cross sections as well as data like drill core logs combined with observations from underground mine galleries, structural measurements, aeromagnetic data, and seismic surveys. For crustal structures, data from seismic surveys lines have been reprocessed for our purpose. Both deposit-scale and regional-scale models allow the reconstruction of a sequence of structural events. The mined ore has formed during remobilization of a proto-ore and is closely related to shear zones (thrusts) that truncate the Outokumpu assemblage. Later faults dismembered the ore explaining the variable depth of the different ore bodies along the Outokumpu ore zone. On larger scale at least four km-scale thrust sheets, separated by major listric shear zones can be identified in the ore belt, which are internally further imbricated by subordinate shear zones. These thrusts separate a number of lens-shape metaperidotite bodies that are probably surrounded by Outokumpu assemblage rocks. Thrust stacking was followed by at least three stages of faulting that divided the ore belt into fault-bounded blocks with heterogeneous displacements: (i) faulting along NW-dipping faults with unresolved kinematics, (ii) reverse faulting along c. 50°–60° SE-dipping faults, and (iii) SW–NE to SSW–NNE striking faults which may have formed at an earlier stage and have been reactivated.The specific Outokumpu alteration assemblage around metaperidotite bodies combined with shear zones acting as path ways for fluids are the main vectors to mineralization. Seismic reflection data do not provide a simple tool to directly detect the sites of Outokumpu assemblage bodies at depth but they identify strong reflector zones which are characteristic for though not exclusive to the assemblage, shear zones can be recognized as curved dislocations in the seismic lines. Our study shows that 3D modeling, when used in combination with surface geology and other geophysical data and good knowledge about the structural evolution clearly improves the interpretation of reflectors and enables the identification of strong reflector packages as Outokumpu assemblage that, due to absent geological control, have first been mapped as “unknown reflector”. It thus enhances the chances for locating potentially economic horizons at depth and to delineate target areas for detailed exploration.  相似文献   

8.
It has been demonstrated on basis of Sm–Nd isotopic analyses of the Cenozoic sands from the Chara and Tokkin Basins in the eastern flank of the Baikal rift zone that the Chara–Olekma Geoblock of the Aldan Shield is an area of intense crust growing processes occurred not only in the Paleoarchaean but in the Mesoarchaean as well.  相似文献   

9.
Wakefieldite-(Ce,La) and vanadinite in coarse-grained calciocarbonatites (sövites) are for the first time reported from the northeastern part of the worldwide largest fluorite deposit at the Amba Dongar carbonatite ring dike, India. Sövite in this part of the carbonatite ring dike is rich in pyrochlore, calcite and magnetite. Pyrochlore makes up almost 50% of some sövite samples and shows core-to-rim compositional changes. The core of pyrochlore consists of primary fluorcalciopyrochlore with high F and Na contents while the margins gained elevated amounts of Pb, La and Ce with the associated loss of F and Na due to circulation of hydrothermal solutions. The presence of wakefieldite-(Ce,La) and vanadinite points to an exceptionally high V abundance in hydrothermal solutions formed towards the end of the carbonatite magma activity. This investigation thus opens new promising areas for Nb and REE prospection in the eastern part of the Amba Dongar carbonatite body.  相似文献   

10.
Understanding intrasalt structure may elucidate the fundamental kinematics and, ultimately, the mechanics of diapir growth. However, there have been relatively few studies of the internal structure of salt diapirs outside the mining industry because their cores are only partly exposed in the field and poorly imaged on seismic reflection data. This study uses 3D seismic reflection and borehole data from the São Paulo Plateau, Santos Basin, offshore Brazil to document the variability in intrasalt structural style in natural salt diapirs. We document a range of intrasalt structures that record: (i) initial diapir rise; (ii) rise of lower mobile halite through an arched and thinned roof of denser, layered evaporites, and emplacement of an intrasalt sheet or canopy; (iii) formation of synclinal flaps kinematically linked to emplacement of the intrasalt allochthonous bodies; and (iv) diapir squeezing. Most salt walls contain simple internal anticlines. Only a few salt walls contain allochthonous bodies and breakout-related flaps. The latter occur in an area having a density inversion within the autochthonous salt layer, such that upper, anhydrite-rich, layered evaporites are denser than lower, more halite-rich evaporites. We thus interpret that most diapirs rose through simple fold amplification of internal salt stratigraphy but that locally, where a density inversion existed in the autochthonous salt, Rayleigh–Taylor overturn within the growing diapir resulted in the ascent of less dense evaporites into the diapir crest by breaching of the internal anticline. This resulted in the formation of steep salt-ascension zones or feeders and the emplacement of high-level intrasalt allocthonous sheets underlain by breakout-related flaps. Although regional shortening undoubtedly occurred on the São Paulo Plateau during the Late Cretaceous, we suggest this was only partly responsible for the complex intrasalt deformation. We suggest that, although based on the Santos Basin, our kinematic model may be more generally applicable to other salt-bearing sedimentary basins.  相似文献   

11.
The study is carried out to detect the subsurface structures that have geological and economic importance by interpreting the available seismic reflection data of an area estimated to be about 1,752 km2. The study comprises of the Kalar–Khanaqin and surrounding area, which is located at Zagros folded zone. Twenty-five seismic sections had been interpreted. The total length of all the seismic lines is about 650.4 km. Interpretation of the seismic data is focused on two reflectors, lower Fars and Jeribe formation. The lower Fars reflector picked at the two-way time ranging from 0.1 to 2.6 second, while the Jeribe reflector picked at the two-way time ranging from 1.0 to 2.7 second. The constructed maps denote to the existence of many closed and nose structures, in addition, to numerous fault types. All these features were detected in the area having the NW–SE trend. The depth of the lower Fars formation is ranging from 100.0 to 4,800.0 m, while the depth of the Jeribe formation is ranging from 1,700.0 to 5,000.0 m. The depth maps for the two formations also refer to the similarity of the major geological structures. These structures appear in both formations with existence of slight variation in dimensions. The closed structure no. (1) is located at the north of the study area. The nose structure no. (2) is located at the south of the area. At the west of the area, the elongated structure no. (3). The longitudinal reveres fault intersects the SW limb of the structure. The SW limb of elongated structure no. (4), intersect by longitudinal reveres fault, is located at the east of the area. There is also the semi-closed structure no. (5), which appears at the west of the area around the Qr-1 well. Most of detected faults are of reverse and thrust types having a variable amount of throws and horizontal displacements. Some seismic sections explained the existence of the decollement surface within lower Fars formation, which caused the thrusting and faulting of the overlaying beds.  相似文献   

12.
13.
New empirical relations are derived for source parameters of the Koyna–Warna reservoir-triggered seismic zone in Western India using spectral analysis of 38 local earthquakes in the magnitude range M L 3.5–5.2. The data come from a seismic network operated by the CSIR-National Geophysical Research Institute, India, during March 2005 to April 2012 in this region. The source parameters viz. seismic moment, source radius, corner frequency and stress drop for the various events lie in the range of 1013–1016 Nm, 0.1–0.4 km, 2.9–9.4 Hz and 3–26 MPa, respectively. Linear relationships are obtained among the seismic moment (M 0), local magnitude (M L), moment magnitude (M w), corner frequency (fc) and stress drop (?σ). The stress drops in the Koyna–Warna region are found to increase with magnitude as well as focal depths of earthquakes. Interestingly, accurate depths derived from moment tensor inversion of earthquake waveforms show a strong correlation with the stress drops, seemingly characteristic of the Koyna–Warna region.  相似文献   

14.
Unlike pahoehoe, documentation of true a′a lavas from a modern volcanological perspective is a relatively recent phenomenon in the Deccan Trap (e.g. Brown et al., 2011, Bull. Volcanol. 73(6): 737–752) as most lava flows previously considered to be a′a (e.g. GSI, 1998) have been shown to be transitional (e.g. Rajarao et al., 1978, Geol. Soc. India Mem. 43: 401–414; Duraiswami et al., 2008 J. Volcanol. Geothermal. Res. 177: 822–836). In this paper we demonstrate the co-existence of autobrecciation products such as slabby pahoehoe, rubbly pahoehoe and a′a in scattered outcrops within the dominantly pahoehoe flow fields. Although volumetrically low in number, the pattern of occurrence of the brecciating lobes alongside intact ones suggests that these might have formed in individual lobes along marginal branches and terminal parts of compound flow fields. Complete transitions from typical pahoehoe to ‘a′a lava flow morphologies are seen on length scales of 100–1000 m within road and sea-cliff sections near Uruli and Rajpuri. We consider the complex interplay between local increase in the lava supply rates due to storage or temporary stoppage, local increase in paleo-slope, rapid cooling and localized increase in the strain rates especially in the middle and terminal parts of the compound flow field responsible for the transitional morphologies. Such transitions are seen in the Thakurwadi-, Bushe- and Poladpur Formation in the western Deccan Traps. These are similar to pahoehoe–a′a transitions seen in Cenozoic long lava flows (Undara ∼160 km, Toomba ∼120 km, Kinrara ∼55 km) from north Queensland, Australia and Recent (1859) eruption of Mauna Loa, Hawaii (a′a lava flow ∼51 km) suggesting that flow fields with transitional tendencies cannot travel great lengths despite strong channelisation. If these observations are true, then it arguably limits long distance flow of Deccan Traps lavas to Rajahmundry suggesting polycentric eruptions at ∼65 Ma in Peninsular India.  相似文献   

15.
The granite‐greenstone terranes of the Eastern Goldfields Province, Yilgarn Craton, Western Australia, are a major Australian and world gold and nickel source. The Kalgoorlie region, in particular, hosts several world‐class gold deposits. To attempt to understand why these deposits occur where they do, it is important to understand the crustal architecture in the region and how the major mineral systems operate in this architecture. One way to understand these relationships is to develop a detailed 3–D geological model for the region. The best method to map the 3–D geometry of major geological structures is by acquisition and interpretation of seismic‐reflection profiles. To contribute to this aim, a grid of deep seismic‐reflection traverses was acquired in 1999 to examine the 3–D geometry of the region in an area including the Kalgoorlie mineral region and mineral fields to the north and west. This grid was tied to the 1991 regional deep seismic traverse and 1997 high‐resolution seismic profiles in the same region. The grid covers an area measuring approximately 50 km wide by 50 km long and extended to a depth of approximately 50 km (below the base of the crust in this region). The resulting 3–D geological model was further constrained by both surface geological data and geophysical interpretations, with the seismic interpretations themselves also constrained by gravity and magnetic modelling. The 3–D model was used to investigate the geometric relationships between the major faults and shear zones in the area, the relationship between the granite‐greenstone succession and the basement, and the spatial relationships between the greenstones and the granites. Interpretation of the grid of seismic lines and construction of the 3–D geological model confirmed the existence of the detachment surface and led to the recognition that the granite‐greenstone contact usually occurs at a much shallower level than the detachment. Also, west‐dipping faults in the vicinity of the Golden Mile, including the Abattoir Shear through to Boulder‐Lefroy Fault, appear to be more important than previously thought in controlling the structure of that area. An antiformal thrust stack occurs beneath a triangle zone centred on the Golden Mile. The Black Flag Group was deposited in a probable extensional setting, and late extension was also probably more important than previously thought. The granite‐gneiss domes were uplifted by the formation of antiformal thrust stacks at depth beneath them.  相似文献   

16.
The Krishna–Godavari (KG) basin, a passive margin Late Carboniferous to Holocene basin along the rifted east coast of India, includes the deltaic and inter-deltaic regions of the Krishna and Godavari rivers onshore and extends into the offshore. It is one of India’s premier hydrocarbon-bearing basins. In an attempt to better understand the thermal history of the basin, apatite fission track (AFT) data has been obtained from six exploration wells (five onshore and one offshore). AFT thermal history models as well as other thermal indicators e.g. vitrinite reflectance (VR), Rock–Eval Tmax data reveal that the host rocks are currently at their maximum post-depositional temperatures and that any possible heating related to small-scale tectonism or rifting episodes in the basin bears little significance on the maturation of the sediments. In the case of one borehole (M-1) however, the organic maturity data reveals a period of Oligocene cooling across an unconformity when ∼1000 m of section was eroded due to falling sea-level. This information offers the potential for improved basin modeling of the KG basin.  相似文献   

17.
We generalize results of geological, geochronological, geochemical, and isotope-geochemical studies of the Vendian–Early Cambrian island-arc plagiogranitoid magmatism in the Altai–Sayan folded area and in the Lake Zone of western Mongolia. Based on these data, we analyzed the scales of development of plagiogranitoid magmatism, studied the petrologic composition and isotope characteristics of granitoids, and established the main sources of plagiogranitoid-generating melts and the leading mechanisms of formation of Early Caledonian juvenile crust.  相似文献   

18.
The Beiya gold–polymetallic orefield, with gold reserves of 305 t, is one of the most representative porphyry-skarn orefields in the Jinshajiang–Ailaoshan Cu–Au ore belt within the Sanjiang region of southwest China. The orefield contains seven deposits: the Wandongshan, Hongnitang, Dashadi, Bijiashan, Weiganpo, Matouwan, and Bailiancun deposits. In this paper we report on the geochemistry and geochronology of porphyries associated with mineralization from the seven deposits. The results show that all the porphyries have similar geochemistry, with high alkalinity, high contents of SiO2, Al2O3, K2O, and Sr, high K2O/Na2O ratios, low MgO, Y, and Yb contents, enrichments in Ba, K, and Pb, depletions in P, Ti, Nb, and Ta, and non-evident to weak Eu depletions (δEu = 0.42–0.99). In the SiO2 vs. Th/Ce diagram, the porphyry samples are distributed in the area of thickened lower crust, and in the Sr/Y vs. Y and La/Yb vs. Yb diagrams, the porphyries broadly followed the batch-melting trend of amphibolite containing up to 10% garnet. LA-MC-ICP-MS zircon U–Pb dating analysis suggests that the porphyries were emplaced between 34.62 ± 0.25 and 36.72 ± 0.25 Ma. They were coeval with lamprophyres (34 to 36 Ma) in the Beiya area and with potassic–ultrapotassic intrusive rocks (40 to 35 Ma) within the Jinshajiang–Ailaoshan magmatic belt, indicating possible genetic relation between these rock types. We suggest that the porphyries in the Beiya gold–polymetallic orefield were derived from the partial melting of a K-rich mafic source in the thickened lower crust, with the melting triggered by asthenospheric upwelling following the removal of lower lithospheric mantle.  相似文献   

19.
Elemental and organic geochemical studies have been carried out on the Gondwana sediments, collected from the outcrops of Permian and Jurassic–Cretaceous rocks in the Krishna–Godavari basin on the eastern coast of India, to understand their paleo and depositional environment and its implications for hydrocarbon generation in the basin. Amongst the studied formations, the Raghavapuram, Gollapalli and Tirupati form a dominant Cretaceous Petroleum System in the west of the basin. Raghavapuram shales and its stratigraphic equivalents are the source rock and Gollapalli and Tirupati sandstones form the reservoirs, along with basaltic Razole formation as the caprock. Major element systematics and X-ray diffraction study of the sandstones indicate them to be variably enriched with SiO2 relative to Al2O3 and CaO, which is associated, inherently with the deposition and diagenesis of the Gondwana sediments. Post-Archean Average Shale normalized rare earth elements in shales show enrichment in most of the samples due to the increasing clay mineral and organic matter assemblage. A negative europium and cerium anomaly is exhibited by the REE's in majority of rocks. Composed primarily of quartz grains and silica cement, the Gollapalli and Tirupati sandstones have characteristics of high quality reservoirs. The shales show a significant increase in the concentration of redox sensitive trace elements, Ni, V, Cr, Ba and Zn. The total organic carbon content of the shales ranges between 0.1 and 0.5 wt%. Programmed pyrolysis of selected samples show the Tmax values to range between 352–497 °C and that of hydrogen index to be between 57–460 mgHC/gTOC. The organic matter is characterized by, mainly, gas prone Type III kerogen. The n-alkane composition is dominated by n-C11–C18 and acyclic isoprenoid, phytane. The aromatic fraction shows the presence of naphthalene, anthracene, phenanthrene, chrysene and their derivatives, resulting largely from the diagenetic alteration of precursor terpenoids. The organic geochemical proxies indicate the input of organic matter from near-shore terrestrial sources and its deposition in strongly reducing, low oxygen conditions. The organic matter richness and maturity derived from a favorable depositional setting has its bearing upon the Gondwana sediments globally, and also provides promising exploration opportunities, particularly in the Raghavapuram sequence of the KG basin.  相似文献   

20.
《Gondwana Research》2013,23(3-4):843-854
The Western Dharwar Craton in peninsular India comprises a typical Meso- to Neo-Archean granite-greenstone terrain. Detrital zircons from two metagreywackes in a late basin from the Gadag Greenstone Belt preserve at least eight age populations ranging in age from ca 3.34 to 2.55 Ga, and grains as old as ca 3.54 Ga. The zircon provenances for the two samples appear to be the same up to ca 3.25 Ga, with relatively juvenile εHf values largely between zero and depleted mantle values. After 3.25 Ga, one sample has similar εHf values whereas the other has only negative values indicative of Hf-evolution in a crustal environment. After ca 3.25 Ga the source regions for the two samples were distinctly different.The detrital zircons reflect the age and evolution of the upper crust of the Western Dharwar Craton. Modeling of Hf isotopic evolution of the detrital zircons suggests two major crust-forming events at ca. 3.6 and 3.36 Ga, and some indication of juvenile addition to the crust at ca 2.6 Ga. The maximum sedimentation age of the greywackes is constrained by the youngest detrital zircon population at 2547 ± 5 Ma. Gold mineralization in the belt is dated at 2522 ± 6 Ma and constrains greywacke sedimentation, deformation and metamorphism to a ca 25 my interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号