首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-hydrostatic algorithm for the Regional Oceanic Modeling System (ROMS) is proposed. It is based on a decomposition technique for hydrostatic and non-hydrostatic pressure. The algorithm has a pressure-correction scheme with split-explicit time-stepping for baroclinic and barotropic vertical modes with a free surface. The algorithm implementation requires solving a Poisson equation for a non-hydrostatic pressure that has a non-symmetric matrix in discrete form. The efficiency of a different class of solvers and preconditioners were tested. The algorithm is successfully implemented with several examples where non-hydrostatic effects are important. These include standing external gravity waves; strongly nonlinear internal wave generation and transformation; stratified shear instability and its associated mixing; and nonlinear internal tidal generation over a ridge. The corresponding changes in the pre-processing and post-processing infrastructure in the existing hydrostatic ROMS code were performed to implement parallel elliptic solvers and a new set of dynamical equations.  相似文献   

2.
A higher-order non-hydrostatic model in a σ-coordinate system is developed. The model uses an implicit finite difference scheme on a staggered grid to simultaneously solve the unsteady Navier-Stokes equations (NSE) with the free-surface boundary conditions. An integral method is applied to resolve the top-layer non-hydrostatic pressure, allowing for accurately resolving free-surface wave propagation. In contrast to the previous work, a higher-order spatial discretization is utilized to approximate the large horizontal pressure gradient due to steep surface waves or rapidly varying topographies. An efficient direct solver is developed to solve the resulting block hepta-diagonal matrix system. Accuracy of the new model is validated by linear and nonlinear standing waves and progressive waves. The model is then used to examine freak (extreme) waves. Features of downshifting focusing location and wave asymmetry characteristics are predicted on the temporal and spatial domains of a freak wave.  相似文献   

3.
Numerical ocean modelling is computationally very demanding. Traditionally, the hydrostatic approximation has been applied to reduce the computational burden. This approximation is valid in large scale studies with coarse grid resolution. With faster computers and gradually smaller grid sizes, we may expect that more studies will be performed with non-hydrostatic ocean models. In recent papers several methods for including non-hydrostatic pressure in σ-coordinate models have been suggested. In this paper the sensitivity of the non-hydrostatic pressure field, the velocity fields, and the density fields to changes in the method for computing non-hydrostatic pressure in σ-coordinate ocean models is addressed.The first test case used involves the propagation and breaking of an internal wave at an incline in a tank. The other test case concerns tidally driven flow over a sill in a stratified fjord. The results from our numerical exercises suggest that the velocity and density fields are very robust to the model choices investigated here. The differences between the model results are of the same order as the uncertainty due to the internal pressure gradient error, and they are smaller than an estimate of the uncertainty due to subgrid scale closure.  相似文献   

4.
In this work, a combined immersed boundary (IB) and volume of fluid (VOF) methodology is developed to simulate the interactions of free-surface waves and submerged solid bodies. The IB method is used to account for the no-slip boundary condition at solid interfaces and the VOF method, utilizing a piecewise linear interface calculation, is employed to track free surfaces. The combined model is applied in several case studies, including the propagation of small-amplitude progressive waves over a submerged trapezoidal dike, a solitary wave traveling over a submerged rectangular object, and wave generation induced by a moving bed. Numerical results depicting the free-surface evolutions and velocity fields are in good agreement with either experimental data or numerical results obtained by other researchers. In addition, the simplification of the initial free-surface deformation used in most tsunami earthquake source study is justified by the present model application. The methodology presented in the paper serves as a good tool for solving many practical problems involving free surfaces and complex boundaries.  相似文献   

5.
A higher-order non-hydrostatic σ model is developed to simulate non-linear refraction–diffraction of water waves. To capture non-linear (or steep) waves, a 4th-order spatial discretization is utilized to approximate the large horizontal pressure gradient. A higher-order top-layer pressure treatment is further implemented to resolve wave propagation. The model's characteristics including linear wave dispersion and non-linearity are carefully examined. The accuracy of the present model using only two vertical layers is validated by laboratory data and the available results predicted by the non-linear Schrödinger equation, Boussinesq-type equations, the non-linear mild slope equation, and the Laplace equation. Features of harmonic generation as well as the influences of dispersion and non-linearity on wave energy transfer processes are discussed.  相似文献   

6.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

7.
In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.  相似文献   

8.
Non-linear and solitary surface waves represent one of the most intriguing and thoroughly investigated phenomena in ocean dynamics. Up to now, a considerable number of results have been obtained, which are related to the study of solitary waves in the coastal shelf zone, and their propagation and transformation under the effect of various factors. In the majority of such studies, the sea bottom surface was assumed to be impervious to fluid. Only some of them, e.g. refs 1–4, considered the propagation of waves in the limited layers of fluids on the pervious (porous) bases. At the same time, Shepard [5] and Nikolaevsky [6] pointed out that the bottom surface structure on the shelf is often porous. In this case, the pervious layer represents a porous matrix (possibly deformable) completely filled with fluid. Its density is different from the free fluid density.Translated by Mikhail M. Trufanov. UDK 532.59.  相似文献   

9.
吕彪 《中国海洋工程》2014,28(5):617-628
A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to solve the Navier-Stokes equations in two major steps. A top-layer pressure method is proposed to minimize the number of vertical layers and subsequently the computational cost. Three classical examples of small amplitude free surface flows are used to demonstrate the capability and efficiency of the model. The satisfactory results demonstrated the capability and efficiency of modelling a range of small amplitude free surface flows with only a small number of vertical layers.  相似文献   

10.
11.
12.
南海北部内孤立波数学模型   总被引:3,自引:0,他引:3  
在二层内潮数学模型的基础上,考虑非静力平衡扰动压力的影响,导出潮频内孤立波产生、传播的数学模型。该模型不受小地形假设的限制,并适用于南海。应用该模型能解释说明产生以下现象的物理机制:潮流流过巴坦-萨布坦海脊时,在一定海洋环境条件下,通过潮流与起伏的底地形相互作用可激发产生潮频内孤立波,并西传至东沙群岛附近的海域。  相似文献   

13.
This paper presents CCHE2D-NHWAVE, a depth-integrated non-hydrostatic finite element model for simulating nearshore wave processes. The governing equations are a depth-integrated vertical momentum equation and the shallow water equations including extra non-hydrostatic pressure terms, which enable the model to simulate relatively short wave motions, where both frequency dispersion and nonlinear effects play important roles. A special type of finite element method, which was previously developed for a well-validated depth-integrated free surface flow model CCHE2D, is used to solve the governing equations on a partially staggered grid using a pressure projection method. To resolve discontinuous flows, involving breaking waves and hydraulic jumps, a momentum conservation advection scheme is developed based on the partially staggered grid. In addition, a simple and efficient wetting and drying algorithm is implemented to deal with the moving shoreline. The model is first verified by analytical solutions, and then validated by a series of laboratory experiments. The comparison shows that the developed wave model without the use of any empirical parameters is capable of accurately simulating a wide range of nearshore wave processes, including propagation, breaking, and run-up of nonlinear dispersive waves and transformation and inundation of tsunami waves.  相似文献   

14.
不同TVD 格式对内孤立波数值模拟结果影响研究   总被引:1,自引:0,他引:1  
陈同庆  张庆河 《海洋科学》2013,37(6):102-107
为了研究不同TVD格式对内孤立波模拟结果的影响,利用改进后的SUNTANS三维非静压海洋模型,通过理想算例和南海东北部海域内孤立波的模拟,比较分析了求解温盐方程TVD格式的4种经典通量限制函数(superbee, minmod, van Leer和MUSCL)对计算结果的影响。综合理想算例和南海东北部海域模拟结果,在所讨论的4种通量限制函数中,利用MUSCL限制函数所得模拟结果最优,建议在南海东北部海域内孤立波模拟中采用MUSCL限制函数。  相似文献   

15.
We explore the efficacy of “super parameterization” (SP) in ocean modeling in which local 2-d non-hydrostatic plume-resolving fine-grained (FG) models are embedded at each vertical column of a coarse-grained (CG) hydrostatic model. A general multi-scale algorithm is described in which tendencies from the FG models are projected onto the CG model which in turn constrains the average state of the FG models, coupling the two models together. The approach is tested in the context of models of open ocean deep convection and compared with a pure hydrostatic, coarse resolution model using convective adjustment (HYD) and a full 3-d non-hydrostatic plume-resolving simulation (NH). The SP model is found to be greatly superior to HYD at much less computational cost than the fully non-hydrostatic calculation.  相似文献   

16.
《Oceanologica Acta》2002,25(2):51-60
A new composite model, which consists of a generation model of the internal tides and a regularized long wave propagation model, is presented to study the generation and evolution of internal solitary waves in the sill strait. Internal bores in the sill strait are first simulated by the generation model, and then the internal tidal field outside of the sill region is given as input for the propagation model. Numerical experiments are carried out to study the imposing tide, depth profile, channel width and shoaling effect, etc., on the generation and evolution of internal solitary waves. It is shown that only when the amplitude of internal tide at the forcing boundary of the propagation model is large enough that a train of internal solitary waves would be induced. The amplitude of the imposing tide in the generation model, shoaling effect, asymmetry of the depth profile and channel width have some effects on the amplitude of the induced internal solitary wave. The imposing tidal flow superimposed on a constant mean background flow has a great damping effect on the induced internal waves, especially on those propagate against the background flow direction. The generation and propagation of internal solitary waves in three possible straits among the Luzon Strait are simulated, and the reasons for the asymmetry of their propagation are also explained.  相似文献   

17.
Computation of solitary waves during propagation and runup on a slope   总被引:1,自引:0,他引:1  
A numerical time-simulation algorithm for analysing highly nonlinear solitary waves interacting with plane gentle and steep slopes is described by employing a mixed Eulerian–Lagrangian method. The full nonlinear free surface conditions are considered here in a Lagrangian frame of reference without any analytical approximations, and thus the method is valid for very steep waves including overturning. It is found that the runup height is crucially dependent on the wave steepness and the slope of the plane. Pressures and forces exerted on impermeable walls of different inclinations (slopes) by progressive shallow water solitary waves are studied. Strong nonlinear features in the form of pronounced double peaks are visible in the time history of pressure and force signals with increasing heights of the oncoming solitary waves. The effect of nonlinearity is less pronounced as the inclination of the wall decreases with respect to the bottom surface.  相似文献   

18.
A non-linear non-hydrostatic model (MIT-gcm) is used to study the generation and propagation of internal tides. The model domain covers a continental slope and neighbouring parts of the deep ocean and shelf. Uniformity in the along-slope direction is assumed. We focus on the non-linear evolution of the internal tide once generated. In particular, we show that in the main region of generation, over the upper part of the slope, small-scale features occur, indicative of breaking and mixing. Far from the generation region, non-linear processes are important in the reflection of the beam at the bottom, where higher harmonics are generated. This implies an energy transfer toward higher frequencies and the resulting shape of the energy spectra is consistent with observations. Turbulent and mixing processes are analysed by employing an adiabatic sorting method; thus, we calculate the development in time of the available potential energy, the variation in the background potential energy due to irreversible processes, and the distribution of the Cox number (the local turbulent diffusivity normalized by the background diffusivity) over the slope. With rotation, the transfer of energy to higher harmonics is reduced.  相似文献   

19.
20.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号