首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We measured the flux densities of the radio source 3C 58, which was identified with the remnant of SN 1181, in April–May 2003 relative to the spectrum of the standard source 3C 295 at fourf requencies in the range 1550 to 8450 MHz using the RTF-32 radio telescope at the Svetloe Observatory of the Institute of Applied Astronomy (Russian Academy of Sciences). We found significant nonstationary frequency-dependent flux-density variations in 3C 58 and variations in its instantaneous spectrum. We established that these variations occurred between 1986 and 1998. Based on data for the instantaneous spectra, we show that the break in the spectrum of 3C 58 results from prolonged energy losses by relativistic electrons through synchrotron radiation that took place in a nebula with an age of 5400 yr, equal to the age of the pulsar PSR J0205+6449. SN 1181 is shown to have exploded without the birth of a pulsar, which is characteristic of type-I supernovae. The shock acceleration of relativistic electrons after the explosion may be responsible for the observed nonstantionarity of the flux densities. The long-term evolution of the radio spectrum for the nebula 3C 58 and the nonstationary flux-density variations due to the explosion of SN 1181 are reconciled in terms of a model of an evolved binary system.  相似文献   

3.
4.
We describe the cooling theory for isolated neutron stars that are several tens of years old. Their cooling differs greatly from the cooling of older stars that has been well studied in the literature. It is sensitive to the physics of the inner stellar crust and even to the thermal conductivity of the stellar core, which is never important at later cooling stages. The absence of observational evidence for the formation of a neutron star during the explosion of Supernova 1987A is consistent with the fact that the star was actually born there. It may still be hidden in the dense center of the supernova remnant. If, however, the star is not hidden, then it should have a low thermal luminosity (below ~1034 erg s?1) and a short internal thermal relaxation time (shorter than 13 yr). This requires that the star undergo intense neutrino cooling (e.g., via the direct Urca process) and have a thin crust with strong superfluidity of free neutrons and/or an anomalously high thermal conductivity.  相似文献   

5.
6.
Earlier photometric and spectroscopic observations of the binary BM Ori are interpreted in terms of a thin disk model for the object which causes the eclipses. It is shown that the secondary mass, about which the disk particles orbit, has small dimensions and a mass of 3 to 4m , which suggests that it can only be a collapsed star. The model requires a history of mass exchange or mass loss for the binary. If the Trapezium stars have been formed with the past 2×104 yr, as some studies have indicated, a less conventional alternative, perhaps involving fragmentation of a pre-stellar mass, is needed. Further observations may make it possible to decide for certain between this and a recent model by Hall.  相似文献   

7.
We briefly review recent developments in black hole accretion disk theory, emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that large-scale MHD torques facilitate vertical transport of angular momentum. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified at small radii and this affects the disk emission spectrum. We present a simple model demonstrating how energetic, magnetically-driven outflows modify the emergent disk emission spectrum with respect to that predicted by standard accretion disk theory. A comparison of the predicted spectra against observations of quasar spectral energy distributions suggests that mass accretion rates inferred using the standard disk model may be severely underestimated.  相似文献   

8.
It has been shown that black holes can be quantized by using Bohr’s idea of quantizing the motion of an electron inside the atom. We apply these ideas to the universe as a whole. This approach reinforces the suggestion that it may be a way to unify gravity with quantum theory.  相似文献   

9.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

10.
We present a necessary and sufficient condition for an object of any mass m to be a quantum black hole (q.b.h.): “The product of the cosmological constant Λ and the Planck’s constant , Λ and corresponding to the scale defined by this q.b.h., must be of order one in a certain universal system of units”. In this system the numerical values known for Λ are of order one in cosmology and about 10122 for Planck’s scale. Proving that in this system the value of the cosmological c is of order one, while the value of for the Planck’s scale is about 10−122, both scales satisfy the condition to be a q.b.h., i.e. Λ≈1. In this sense the Universe is a q.b.h. We suggest that these objects, being q.b.h.’s, give us the linkage between thermodynamics, quantum mechanics, electromagnetism and general relativity, at least for the scale of a closed Universe and for the Planck’s scale. A mathematical transformation may refer these scales as corresponding to infinity (our universe) and zero (Planck’s universe), in a “scale relativity” sense.  相似文献   

11.
12.
The X-ray holes at the centre of the Perseus cluster of galaxies are not all at the same position angle with respect to the centre of the cluster. This configuration would result if the jet inflating the bubbles is precessing, or moving around, and the bubbles detach at different times. The orientations which best fit the observed travel directions are an inclination of the precession axis to the line of sight of 120° and an opening angle of 50°. From the time-scales for the bubbles seen in the cluster, the precession time-scale, τprec, is around  3.3 × 107 yr  . The bubbles rising up through different parts of the cluster may have interacted with the central cool gas, forming the whorl of cool gas observed in the temperature structure of the cluster. The dynamics of bubbles rising in fluids is discussed. The conditions present in the cluster are such that oscillatory motion, observed for bubbles rising in fluids on Earth, should take place. However, the time-scale for this motion is longer than that taken for the bubbles to evolve into spherical-cap bubbles, which do not undergo a path instability, so such motion is not expected to occur.  相似文献   

13.
14.
The spin of central black holes with intermediate masses in globular clusters is determined using the well known relationship between the kinetic power of a relativistic jet and the observed radio luminosity of the region closest to a central black hole. The estimate of the magnitude of the spin is based on the known Blandford-Znajek mechanism. The magnetic field near the event horizon of a black hole is determined using a magnetic coupling mechanism that assumes equality between the densities of the magnetic and kinetic energies of the accreting gas (the Magnetic Coupling Model). The rate of accretion [(M)\dot] \dot{M} is derived on the basis of the Bondi-Hoyle mechanism.  相似文献   

15.
Recent results of the gamma-ray Cherenkov astronomy definitely prove the existence of fast variability in the very high energy (V.H.E.) gamma-ray flux of some active galactic nuclei. The BL Lac PKS 2155-304 for instance showed variations down to a few minutes time scale. From standard light travel time argument, these variations put extremely strong constraints on the size of the TeV emitting zone, which has to be of the order of a few Schwarzschild radius, even for high values of the relativistic Doppler factor of the emitting jets. Such discovery is a challenge for particle acceleration scenarios, which have to imagine efficient acceleration processes at work in a very compact zone. Eventually, the immediate vicinity of the central black hole appears as the most conservative choice for the location of the TeV emission region of active galactic nuclei. In this paper, we propose a two-step mechanism for charged particle acceleration in the magnetosphere of a massive black hole surrounded by an accretion disk. Particles first gain energy by a stochastic process during the accretion phase. It is shown that effective proton acceleration up to energies 1017–1019 eV is possible in a low-luminosity magnetized accretion disk with 2D turbulent motion. The distribution function of energetic protons over energies is a power law function with typical index ≃−1. Here electrons are not very efficiently accelerated because of their drastic losses by synchrotron radiation. In a second time, part of the fast particles escape from the disk and are then entrained by the magnetic structure above the disk, in the rotating black hole magnetosphere. They thus gain additional energy by direct centrifugal mechanism, up to about 1020 eV for the protons and to 10–100 TeV for the electrons when they cross the light cylinder surface. Such energetic particles can further radiate in the TeV spectral range observed by Cherenkov experiments as HESS, MAGIC and VERITAS. Energetic protons can produce γ-radiation in the energy band 1 GeV–100 TeV and above mainly by nuclei collisions with the disk matter, clouds, or ambient low energy photons. Energetic electrons can also reach the required spectral range by inverse Compton emission. However their acceleration is less efficient due to heavy radiation losses, and only gained by centrifugal process during the second phase of the whole mechanism we describe. Our present analysis would therefore favor hadronic scenarios for TeV emission of active galactic nuclei. It is tempting to relate long term variability over years of TeV active galactic nuclei to the first stochastic acceleration phase, which also provides the needed power law particle distributions, while short term variability over minutes is more likely due to perturbations of the second fast direct acceleration phase.  相似文献   

16.
17.
In this paper, we have investigated the geodesics of neutral particles near a five-dimensional charged black hole using a comparative approach. The effective potential method is used to determine the location of the horizons and to study radial and circular trajectories. This also helps us to analyze the stability of radial and circular orbits. The radius of the innermost stable circular orbits have also been determined. Contrary to the case of massive particles for which, the circular orbits may have up to eight possible values of specific radius, we find that the photons will only have two distinct values for the specific radii of circular trajectories. Finally we have used the dynamical systems analysis to determine the critical points and the nature of the trajectories for the timelike and null geodesics.  相似文献   

18.
With the aid of a simple black hole model of quasars we have found that the majority of the distinguishable emission lines in the spectrum of the quasar 1604+179 can be assigned to two redshift systems,z r =3.712 andz b =2.701. The appearance of double emission redshifts means that this quasar might be a massive black hole (of mass 108 M M1011 M ) with a ring-like emission line region (of radius 1 light-day r 01 light-year) in its accretion disk.  相似文献   

19.
We apply the Lorentz boosting method to the Kerr-Newman metric in harmonic coordinates, and obtain the second post-Minkowskian order harmonic metric for a moving Kerr-Newman black hole with an arbitrary constant speed. This metric may be useful for investigating observable relativistic effects due to the motion of the moving source. As an application, the post-Newtonian equations of motion for a particle and a photon in the far field of this black hole are calculated.  相似文献   

20.
The fluctuating-accretion model of Lyubarskii and its extension by Kotov, Churazov & Gilfanov seek to explain the spectral-timing properties of the X-ray variability of accreting black holes in terms of inward-propagating mass accretion fluctuations produced at a broad range of radii. The fluctuations modulate the X-ray emitting region as they move inwards and can produce temporal-frequency-dependent lags between energy bands, and energy-dependent power spectral densities (PSDs) as a result of the different emissivity profiles, which may be expected at different X-ray energies. Here, we use a simple numerical implementation to investigate in detail the X-ray spectral-timing properties of the model and their relation to several physically interesting parameters, namely the emissivity profile in different energy bands, the geometrical thickness and viscosity parameter of the accretion flow, the strength of damping on the fluctuations and the temporal coherence (measured by the 'quality factor', Q ) of the fluctuations introduced at each radius. We find that a geometrically thick flow with large viscosity parameter is favoured, and we confirm that the predicted lags are quite robust to changes in the emissivity profile and physical parameters of the accretion flow, which may help to explain the similarity of the lag spectra in the low/hard and high/soft states of Cyg X-1. We also demonstrate the model regime where the light curves in different energy bands are highly spectrally coherent. We compare model predictions directly to X-ray data from the narrow line Seyfert 1 galaxy NGC 4051 and the black hole X-ray binary (BHXRB) Cyg X-1 in its high/soft state, and we show that this general scheme can reproduce simultaneously the time lags and energy-dependence of the PSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号