首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The period of interplanetary, geomagnetic and solar disturbances of September 7–15, 2005, is characterized by two sharp increases of solar wind velocity to 1000 km/s and great Dst variation of the geomagnetic field (~140 nT). The time variations of theoretical and experimental geomagnetic thresholds observed during this strong geomagnetic storm, their connection with solar wind parameters and the Dst index, and the features of latitudinal behavior of geomagnetic thresholds at particular times of the storm were studied. The theoretical geomagnetic thresholds were calculated with cosmic ray particle tracing in the magnetic field of the disturbed magnetosphere described by Ts01 model. The experimental geomagnetic thresholds were specified by spectrographic global survey according to the data of cosmic ray registration by the global station network.  相似文献   

2.
The paper is dedicated to studying the dynamics of the auroral ionosphere at the level of the sporadic Es layer during magnetospheric disturbances. A new approach to this problem, proposed in the paper, uses the geomagnetic PC index, which is calculated using the magnetic data in the polar caps of the northern and southern hemispheres and manifests the geoefficiency of the interplanetary electric field. It is shown that variations in the sporadic electron concentration in the auroral Es layer could be related to changes in the PC index with a high degree of statistical reliability. However, the character of precipitations of sporadic particles into the ionosphere under high (PC > 2 mV/m) and low (PC < 2 mV/m) magnetic activity differs substantially. During strong magnetic disturbances and under intensified electric fields in the interplanetary environment, the intensity of particle precipitation from the magnetosphere into the E region of the high-latitude ionosphere is governed by the values of the PC magnetic index. During weak magnetic disturbances, short-time pulses of an increase in the PC values, caused by the variability in electric field in the magnetosphere, are the main factor in the occurrence of sporadic ionization in the Es layer.  相似文献   

3.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

4.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

5.
本文讨论了行星际磁场B2分量变化时内磁层和中低纬度电离层的响应.指出B2变化引起的磁层大尺度对流电场的变化在一定条件下有可能透入内磁层,并沿磁力线映射到中低纬度电离层,在那里产生电场和电流体系,从而使Sq电流体系发生畸变,并在地面磁场中反映出来.数值计算表明,当△B2<0时,Sq电流体系的焦点向东和向高纬移动,地面磁场会观测到数伽马的变化.这就为中低纬地磁观测诊断磁层和太阳风状态提供了一种可能性.此外,本文还用上述物理过程解释了赤道地区一些高空物理现象,如B2倒转时电离层漂移速度的变化,赤道磁场异常以及赤道q型偶现E层的消失等等.  相似文献   

6.
提出了一个新的太阳宇宙线日 -地传输的数学模型 ,它包括日冕粒子分布源和行星际传播方程 .根据对太阳宇宙线耀斑黑子群特征和耀斑相的观测 ,提出了多极性黑子湮没的两阶段日冕传输过程和传输方程 ,得到了与观测特征一致的日冕粒子分布源 .日冕传输的第一阶段 ,和太阳耀斑脉冲相的时间相当 ,加速粒子通过扩散很快均匀地分布在耀斑区 ,形成所谓快传播区 .第二阶段 ,加速粒子向快传播区以外的日冕区扩散并向行星际空间逃逸 ,形成慢传播过程 .日冕传输模型的数值结果和日冕传输的观测特征符合 .太阳宇宙线的行星际传播采用三维正交均匀各向异性方程描述 .最后把模型的数值结果与 1 997年 9月 2 4日事件的SOHO(SolarandHeliosphericObservatory)观测资料作了比较 .能较好地符合 .  相似文献   

7.
Dayside near-polar auroral brightenings occur when interplanetary shocks impinge upon the Earth's magnetosphere. The aurora first brightens near local noon and then propagates toward dawn and dusk along the auroral oval. The propagation speed of this wave of auroral light is 10 km s-1 in the ionosphere. This speed is comparable to the solar wind speed along the outer magnetosphere. The fundamental shock-magnetospheric interaction occurs at the magnetopause and its boundary layer. Several physical mechanisms transferring energy from the solar wind directly to the magnetosphere and from the magnetosphere to the ionosphere are reviewed. The same physical processes can occur at other solar system magnetospheres. We use the Haerendel (1994) formulation to estimate the acceleration of energetic electrons to 50 keV in the Jovian magnetosphere/ionosphere. Auroral brightenings by shocks could be used as technique to discover planets in other stellar systems.  相似文献   

8.
The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10\(^{-4}\)–10\(^4\) Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10\(^4\) Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at \(\sim\)1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth’s internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz–3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3–30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7–2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.  相似文献   

9.
We study the influence of the interplanetary magnetic field (IMF) and convection electric field on the rate and destination of polar wind and other thermal (low-energy) ion outflows, and its resulting effects on magnetosphere–ionosphere coupling, using single-particle trajectory simulations in conjunction with ion velocity distribution measurements on Akebono and IMF and ionospheric convection data. We find that the ions preferentially feed the dusk sector of the plasma sheet when the IMF is duskward (By>0), and are more evenly distributed in the plasma sheet when the IMF is dawnward. The flow of oxygen ions originating from the noon or dusk sectors of the polar cap has a higher probability of reaching the magnetosphere and beyond compared with that from the dawn or midnight sectors, due to the increased centrifugal acceleration associated with the larger magnetic field curvature near noon and the increased convection electric field in the dusk sector. The flow is enhanced and confined to lower L-shells at times of strongly southward IMF, compared with that at times of northward IMF. The outflow rate to both the plasma sheet and the magnetotail correlates strongly with the ion temperature. As a result, the IMF and the convection electric fields affect both the overall magnitude and the detailed distribution of mass transfer from the ionosphere to the magnetosphere in magnetosphere–ionosphere coupling.  相似文献   

10.
地球内磁层场向电流的统计特征   总被引:4,自引:2,他引:4       下载免费PDF全文
利用ISEE-1和ISEE-2飞船观测的磁场数据,分析了地球内磁层场向电流的统计特征,包括场向电流的空间(L值和地方时)分布;流进和流出电离层的场向电流随地方时的变化;场向电流发生率与地磁活动水平(以AL指数表征)、行星际磁场(IMF)Bz的关系,电流强度和密度随地磁活动水平的变化等.发现,场向电流大都发生在夜间,且集中在L为6-10区域内,场向电流发生率,强度和密度随地磁活动增强而增大,行星际磁场南向时的发生率远远高于北向时的发生率.这些结果表明,内磁层场向电流的产生是太阳风和磁层、电离层间电动耦合增加的结果.  相似文献   

11.
The solar wind, magnetosphere, and ionosphere are intrinsically coupled through magnetic field lines. The electrodynamic state of the high-latitude ionosphere is controlled by several geophysical processes, such as the location and rate of magnetic reconnection at the magnetopause and in the magnetotail, and the energisation and precipitation of solar wind and magnetospheric plasmas. Amongst the most observed ionospheric manifestation of solar wind/magnetospheric processes are the convection bursts associated with the so-called flux transfer events (FTEs), magnetic impulse events (MIEs), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies of these transient convection phenomena and outlines some unsettled questions as well as future research directions.  相似文献   

12.
We report on the first comprehensive numerical simulation of a space weather event, starting with the generation of a CME and subsequently following this transient solar wind disturbance as it evolves into a magnetic cloud and travels through interplanetary space towards Earth where its interaction with the terrestrial magnetosphere–ionosphere system is also predicted as part of the simulation.  相似文献   

13.
Method of short-term forecast intensity of geomagnetic storms, expected by effect Solar wind magnetic clouds in the Earth’s magnetosphere is developed. The method is based calculation of the magnetic field clouds distribution, suitable to the Earth, the initial satellite measurements therein components of the interplanetary magnetic field in the solar ecliptic coordinate system. Conclusion about the magnetic storm intensity is expected on the basis of analysis of the dynamics of the reduced magnetic field Bz component clouds and established communication intensity of geomagnetic storms on Dst-index values and Bz component of the interplanetary magnetic field vector.  相似文献   

14.
Measurements of solar cosmic ray (SCR) protons in the magnetosphere can be used to verify models of the Earth’s magnetic field. The latitudinal profiles of precipitating SCRs with energies of 1–90 MeV were measured on the CORONAS-F low-orbiting satellite during a strong magnetic storm on October 29–30, 2003. A flux of precipitating protons can remain equal to the interplanetary flux only due to a strong pitch angle diffusion that originates when the radius of the field line curvature is close to that of the particle rotation Larmor radius. The observed boundaries of the strong diffusion region can be compared with the boundaries anticipated according to the models of the magnetic field of the Earth’s magnetosphere. The adiabaticity parameter values, calculated for several instants of the CORONAS-F satellite pass based on the TS05 and parabolic models, do not always correspond to measurements. How possible changes in the model configurations of the magnetic field can allow us to eliminate discrepancies with the experiment and to explain why solar protons with energies of several megaelectronvolts penetrate deep in the Earth’s inner magnetosphere is considered here.  相似文献   

15.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

16.
The general features of the region of interaction of the solar wind with the ionosphere of Venus and Mars are compared using data obtained with the Mariner 5 and the Pioneer Venus Orbiter (PVO) spacecraft for Venus and with the Phobos II, the Mars Global Surveyor (MGS) and the Mars Express spacecraft for Mars. Despite the overall weak intrinsic global magnetic field that is present in both planets there are significant differences in the manner in which the interplanetary magnetic field accumulates and is organized around and within their ionosphere. Such differences are unrelated to the crustal magnetic field remnants inferred from the MGS measurements around Mars. In fact, while in Venus and Mars there is a region in which the magnetic field becomes enhanced as it piles up in their plasma environment it is shown that such a region exhibits different regimes with respect to changes in the ion composition measured outside and within the ionosphere. At Venus the region of enhanced magnetic field intensity occurs in general above the ionopause which represents the boundary across which there is a change in the ion composition with dominant solar wind protons above and planetary O+ ions below. At Mars the region of enhanced magnetic field is located below a magnetic pileup boundary across which there is also a comparable change in the ion composition (solar wind protons above and planetary O+ ions below). It is argued that this difference in the relative position of the region of enhanced magnetic field with respect to that of a plasma boundary that separates different ion populations results from the peculiar response of the ionosphere of each planet to the oncoming solar wind dynamic pressure. While at Venus the peak ionospheric thermal pressure is in general sufficient to withhold the incident solar wind kinetic pressure there is a different response in Mars where the peak ionospheric thermal pressure is in general not large enough to deviate the solar wind. In this latter case the ionosphere is unable to force the solar wind to move around the ionosphere and as a result the oncoming electron population can reach low altitudes where it is influenced by neutral atmospheric particles (the solar wind proton population is replaced at the magnetic pileup boundary which marks the upper extent of the region where the interplanetary magnetic field becomes enhanced). Peculiar conditions are expected near the magnetic polar regions and over the terminator plane where the solar wind is directed along the sides of the planet.  相似文献   

17.
By using Tsyganenko's model for the magnetosphere's magnetic field, which links two hemispheres of the ionosphere, and adopting a practical boundary condition for the electric potential around the polar cap, we developed a new ionosphere–magnetosphere coupling model based on prairie view dynamo code (PVDC). The new model takes the variations in solar wind and interplanetary magnetic field, as well as the geomagnetic activity, into account. Rather than the previous version of PVDC that is useful only for quiet conditions, the new model enables to calculate the electric potential and currents in the ionosphere and the field-aligned current (FAC) off the ionosphere in quiet and disturbed times. Comparison of the calculated FAC with the measurements of Space Technology 5 (ST5) mission shows a good agreement.  相似文献   

18.
Polar regionSq     
Geomagnetically quiet day variations in the polar region are reviewed with respect to geomagnetic field variation, ionospheric plasma convection, electric field and current. Persistently existing field-aligned currents are the main source of the polar regionSq. Consequently, the morphology and variability of the polar regionSq largely depend upon both field-aligned currents and ionospheric conductivity. Since field-aligned currents are the major linkage between the ionosphere and the magnetosphere, the latter is controlled by solar wind state, in particular, the interplanetary magnetic field, the polar regionSq exhibits remarkable IMF dependence.  相似文献   

19.
地磁截止刚度是定量衡量地球磁场对高能粒子屏蔽效应的参数,描述了高能粒子穿越磁层到达指定观测点的带电粒子刚度阈值.人们一直研究垂直方向上的截止刚度,但对作为方向函数的截止刚度,缺少详细研究.我们使用单粒子方法,倒向追踪粒子的运动状态,计算了近地空间不同投掷角度的高能粒子地磁截止刚度,研究发现:(1)天顶方向或者垂直方向的...  相似文献   

20.
The seven CAWSES interplanetary fast forward shocks and their geomagnetic effects during 2004–2005 have been analyzed. It is found that the arrival time of the shocks at Earth can be estimated within an accuracy of ~5 min. Furthermore, AL decreases are found to occur within 10 min of shock impingement on the magnetopause. It was also determined that there is a direct correlation between the interplanetary magnetic field southward directed (IMF Bs) prior to shock arrival and substorms triggered by the shocks. If the IMF is northward prior to shock arrival, the geomagnetic activity is present but is low. One interpretation of this result is that the preconditioning energy stored in the magnetotail leaks away rapidly. A correlation between substorm peak AL and shock strength (Mach number) has also been noted, which could imply that shock strength is important for the amount of energy released into the magnetosphere/ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号