首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ground-based GPS finds potential applications in many atmospheric studies such as spatial distribution of columnar water vapor as well as the tidal oscillations in the atmosphere. The zenith tropospheric delay (ZTD) derived from GPS data at two Indian IGS stations are used to establish its potential for studying the atmospheric tidal, intra-seasonal and planetary oscillations. The major tidal oscillations observed in ZTD data are diurnal, semi-diurnal and their harmonics. Prominent intra-seasonal oscillations observed in ZTD are reported for the first time in this context. These intra-seasonal oscillations are Madden–Julian Oscillation (30–70 days, 60–90 days, 100–120 days) and planetary waves (like 27, 16 and 5–10 days periodicities). Quantification of these periodicities will provide a useful handle to improve the empirical models employed in the estimation of tropospheric delay.  相似文献   

2.
利用GPS网观测反射海啸波引发的电离层扰动   总被引:1,自引:0,他引:1       下载免费PDF全文
唐龙  郭博峰  郑凯 《地球物理学报》2017,60(5):1643-1649
震中产生的海啸波传播到海岸或者遇到水下障碍时会发生反射,从而形成反射海啸波.本文利用稠密的日本GEONET网,首次在电离层扰动图中观测到2011年3月11日Tohoku地震引发的反射海啸波信号.观测到的电离层扰动与海平面的反射海啸波具有相似的波形、水平速度、方向、周期以及到达时间等传播特征,表明观测的电离层扰动为反射海啸波所引起,本文的观测结果表明反射海啸产生的大气内重力波也能向上传播到电离层与等离子体作用.  相似文献   

3.
利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动   总被引:2,自引:1,他引:1       下载免费PDF全文
海平面的海啸波会产生大气重力波进而引发电离层扰动.本文利用日本GPS总电子含量数据来探测2011年3月11日Tohoku海啸引发的电离层扰动.观测结果表明,在日本上空的电离层中存在两种重力波信号,分别由海平面的海啸波以及地震破裂过程产生.地震产生的电离层重力波分布在震中周围(包括海洋上空以及远离海洋的区域),而海啸引发的电离层重力波主要分布在海洋上空.地震产生的电离层重力波具有不同的水平速度,包括约210 m·s-1以及170 m·s-1,其频率为1.5 mHz;而海啸引发的电离层重力波水平速度快于前者,约为280 m·s-1,其频率为1.0 mHz.此外,海啸引发电离层重力波与海平面上的海啸波有相似的水平速度、方向、运行时间、波形以及频率等传播特征.本文的研究将电离层中的海啸信号与地震信号区分开来,进一步确认电离层对海啸波的敏感性.  相似文献   

4.
5.
In many surveying applications, determination of accurate heights is of significant interest. The delay caused by the neutral atmosphere is one of the main factors limiting the accuracy of GPS positioning and affecting mainly the height coordinate component rather than horizontal ones. Estimation of the zenith total delay is a commonly used technique for accounting for the tropospheric delay in static positioning. However, in the rapid static positioning mode the estimation of the zenith total delay may fail, since for its reliable estimation longer observing sessions are required. In this paper, several troposphere modeling techniques were applied and tested with three processing scenarios: a single baseline solution with various height differences and a multi-baseline solution. In specific, we introduced external zenith total delays obtained from Modified Hopfield troposphere model with standard atmosphere parameters, UNB3m model, COAMPS numerical weather prediction model and zenith total delays interpolated from a reference network solution. The best results were obtained when tropospheric delays derived from the reference network were applied.  相似文献   

6.
The South Ural meteoroid (February 15, 2013; near the city of Chelyabinsk) is undoubtedly the best documented meteoroid in history. Its passage through the atmosphere has been recorded on videos and photographs, visually by observers, with ground-based infrasound microphones and seismographs, and by satellites in orbit. In this work, the results are presented of an analysis of the transionospheric GPS sounding data collected in the vicinity of the South Ural meteoroid site, which show a weak ionospheric effect. The ionospheric disturbances are found to be asymmetric about the explosion epicenter. The received signals are compared, both in shape and amplitude, with the reported ionospheric effects of ground level explosions with radio diagnostics. It is shown that the confident registration of ionospheric effects as acoustic gravity waves (AGWs) by means of vertical sounding and GPS technologies for ground explosions in the range of 0.26–0.6 kt casts doubt on the existing TNT equivalent estimates (up to 500 kt) for the Chelyabinsk event. The absence of effects in the magnetic field and in the ionosphere far zone at distances of 1500–2000 km from the superbolide explosion epicenter also raises a question about the possibility of an overestimated TNT equivalent. An alternative explanation is to consider the superposition of a cylindrical ballistic wave (due to the hypersonic motion of the meteoroid) with spherical shock waves caused by the multiple time points of fragmentation (multiple explosions) of the superbolide as a resulting source of the AGW impact on ionospheric layers.  相似文献   

7.
Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statistical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.  相似文献   

8.
Scientific attention has recently been focused on the coupling of the earth’s upper atmosphere and ionosphere. In the present work, we review the advances in this field, emphasizing the studies and contributions of Chinese scholars. This work first introduces new developments in the observation instruments of the upper atmosphere. Two kinds of instruments are involved: optical instruments (lidars, FP interferometers and all-sky airglow imagers) and radio instruments (MST radars and all-sky meteor radars). Based on the data from these instruments and satellites, the researches on climatology and wave disturbances in the upper atmosphere are then introduced. The studies on both the sporadic sodium layer and sporadic E-layer are presented as the main works concerning the coupling of the upper atmosphere and the low ionosphere. We then review the investigations on the ionospheric longitudinal structure and the causative atmospheric non-migrating tide as the main progress of the coupling between the atmosphere and the ionospheric F2-region. Regarding the ionosphere-thermosphere coupling, we introduce studies on the equatorial thermospheric anomaly, as well as the influence of the thermospheric winds and gravity waves to the ionospheric F2-region. Chinese scholars have made much advancement on the coupling of the ionosphere and upper atmosphere, including the observation instruments, data precession, and modeling, as well as the mechanism analysis.  相似文献   

9.
The Global Positioning System (GPS) finds important application in satellite-based navigation. This application requires priori modeling of tropospheric refraction of GPS signal, which is in the microwave domain. The tropospheric delay for microwaves estimated by ray tracing through the Earth's atmosphere is modeled in terms of measurable surface meteorological parameters such as atmospheric pressure, temperature, water vapor partial pressure as well as columnar water vapor for different locations over the Indian subcontinent using the upper air data for three years (1995–1997). Different forms of the empirical relation were examined to develop these models. Site-specific models are first generated for different locations selected for this study (eight Range and Integrity Monitoring Station). Taking all these models into account a unified model is developed, which is applicable for the entire subcontinent. Though the unified model is slightly inferior to site-specific models, the deviations are within the allowable limits for this specific application. The merit of unified model, however, lies in the fact that a single model can be used for any location over the subcontinent. The model predictions are compared with the tropospheric delay derived from ground-based GPS measurements to establish the model accuracy.  相似文献   

10.
The most important models of coupling in the lithosphere-atmosphere-ionosphere system are considered. In some of these models, it is assumed that atmospheric acoustic and acoustic gravity waves (AGWs), which propagate through the atmosphere and reach ionospheric altitudes (resulting in the generation of electric field disturbances and modulation of charged particle density), are generated in the near-Earth atmosphere over the earthquake preparation region. In other models it is assumed that ionospheric disturbances originate owing to the modification of electric fields and currents due to electric processes in the lithosphere or near-Earth atmosphere. It seems impossible to stress on only one model and reject the remaining models because the characteristic spatial scales of effects observed in the ionosphere before earthquakes vary from 200–300 km to several thousand kilometers, and the characteristic times vary from several minutes to several days. We can assume that there are several physical mechanisms by which the lithosphere-ionosphere coupling is actually implemented.  相似文献   

11.
This paper deals with how atmospheric gravity waves produce the traveling ionospheric disturbances (TIDs) that are observed by ionosondes. It is shown that, rather than directly producing variations of ionospheric height, a likely mechanism involves changes in ionization density by gradients in the horizontal atmospheric gravity wave air motion. These density changes can be observed as variations of the height of an ionospheric isodensity surface (the usual way of measuring TIDs). This mechanism involving enhancement/depletion of ionospheric density requires quite moderate atmospheric gravity wave air motion speeds, and works well at almost all latitudes.  相似文献   

12.
Based on the data from the GPS receiving networks in Japan and America which have a high time resolution (2 min), two-dimensional (2D) distributions of the variations in the ionospheric total electron content (TEC) are constructed both close to and far from of the epicenter of the submarine earthquake of March 11, 2011 in Japan. Above the epicenter, a diverging multi-period disturbance appears after the main shock due to the acoustic gravity waves. Far from the epicenter, the wave trains associated with the tsunamigenic atmospheric internal gravity waves are revealed. These atmospheric waves significantly advance the arrival of the tsunami signal initially on the Hawaiian islands and then on the western coast of North America. The presence of the tsunami precursor in the form of atmospheric gravity waves is supported by the numerical calculations and by the analysis of the dispersion relation for the waves in the atmosphere. The detected ionospheric responses close and far from the epicenter can be used in the early tsunami warning systems.  相似文献   

13.
A review is presented of the effects influencing the ionosphere which are caused by acoustic emission from different sources (chemical and nuclear explosions, bolides, meteorites, earthquakes, volcanic eruptions, hurricanes, launches of spacecrafts and flights of supersonic jets). A terse statement is given of the basic theoretical principles and simplified theoretical models underlying the physics of propagation of infrasonic pulses and gravity waves in the upper atmosphere. The observations of “quick” response by the ionosphere are pointed out. The problem of magnetic disturbances and magnetohydrodynamic (MHD) wave generation in the ionosphere is investigated. In particular, the supersonic propagation of ionospheric disturbances, and the conversion of the acoustic energy into the so-called gyrotropic waves in the ionospheric E-layer are considered.  相似文献   

14.
Inversion of GPS meteorology data   总被引:14,自引:0,他引:14  
The GPS meteorology (GPS/MET) experiment, led by the Universities Corporation for Atmospheric Research (UCAR), consists of a GPS receiver aboard a low earth orbit (LEO) satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earths horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km). In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL), using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more). This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically propagating large-scale gravity waves and equatorial waves).Present address: Communications Research Laboratory, Upper Atmosphere Section, 4-2-1 Nukui- Kita, Koganei- shi, Tokyo 184, Japan  相似文献   

15.
Acoustic waves have a remarkable ability to transfer energy from the ground up to the uppermost layers of the atmosphere. On the ground, there are many permanent sources of infrasound, and also pulsed and/or sporadic sources (e.g., sea waves, infrasonic and sonic noise of cities, lightning, earthquakes, explosions, etc.). The infrasonic waves carry away the major part of their energy upwards through the atmosphere. What are the consequences of the upward energy transfer? What heights of the atmosphere are supplied by energy from various sources of an infrasonic wave? In most cases, the answers to these questions are not well known at present. The only opportunity to monitor the propagation of an infrasonic wave to high altitudes is to watch for its influence on the ionospheric plasma. Unfortunately, most of standard equipment for ionospheric sounding, as a rule, cannot detect plasma fluctuations in the infrasonic range. Besides, the form of an infrasonic wave strongly varies during propagation due to nonlinear effects. However, the development of the Doppler method of radiosounding of the ionosphere has enabled progress to be made. Simultaneously, the ionospheric method for sensing aboveground and underground explosions has been developed. Its main advantage is the remote observation of an explosion in the near field zone by means of short radio waves, i.e., the radio sounding of the ionosphere directly above the explosion. The theory of propagation of an acoustic pulse produced by an explosion on the ground up to ionospheric heights has been developed better than the theory for other sources, and has been quantitatively confirmed by experiments. A review of some advances in the area of infrasound investigations at ionospheric heights is given and some current problems are presented.  相似文献   

16.
We present a study of ionospheric and thermospheric response during a November 9–10, 2004 major geomagnetic storm event (DsT ~?300 nT). We utilize the North American sector longitude chain of incoherent scatter radars at Arecibo, Millstone Hill, and Sondrestrom, operating as part of a coordinated international mesosphere/lower thermosphere coupling study experiment. Total electron content (TEC) determinations from global positioning system (GPS) ground receivers, ground magnetometer traces from the Canadian CANOPUS array, Defense Meteorological Satellite Platform (DMSP) topside data, and global convection patterns from the SuperDARN radar network are analyzed to place the detailed radar data in proper mesoscale context. The plasmaspheric boundary layer (PBL) expanded greatly in the dusk sector during ring current intensification to span more than 25° of magnetic latitude, reaching as far south as 30° invariant latitude. Strong sub-auroral polarization stream velocities of more than 1 km/s were accompanied by large upwards thermal O+ fluxes to the overlying magnetosphere. The large PBL expansion subsequently exposed both Millstone Hill and Sondrestrom to the auroral convection pattern, which developed a complex multicell and reverse convection response under strongly northward IMF conditions during a period of global interplanetary electric field penetration. Large traveling atmospheric and ionospheric disturbances caused significant neutral wind and ion velocity surges in the mid-latitude and tropical ionosphere and thermosphere, with substorm activity launching equatorward neutral wind enhancements and subsequent mid-latitude dynamo responses at Millstone Hill. However, ionosphere and thermosphere observations at Arecibo point to significant disturbance propagation modification in the post-dusk sector PBL region.  相似文献   

17.
1987年9月23日日环食引起的电离层扰动   总被引:3,自引:0,他引:3       下载免费PDF全文
本文利用武汉电离层观象台的高频多普勒台阵、TEC台阵和加密频高图等多种观测资料,分析了1987年9月23日发生在我国境内的日环食的电离层效应,简要地讨论了光食过程的电离层变化,着重研究了食后电离层扰动以及这种效应的高度演变和传播特征.结果表明:1.在不同高度上电离层的光化过程的弛豫时间不同,光食效应有明显的高度差异;2.食后出现了电离层行扰,这种扰动的特性随高度变化十分复杂,但不同高度上扰动的水平传播方向都指向日食中心带.这种扰动的激发源不在环食中心带内,它的激发可能与日食时大范围的大气冷却收缩所引起的低层大气运动的不稳定性有关.  相似文献   

18.
The article presents research conducted by means of the GPS technique through TEC (Total Electron Content) computation for individual satellites. The proposed method makes it possible to investigate small ionospheric structures. For strong ionospheric disturbances, at high and middle latitudes, one can observe a ionospheric trough shift towards the lower latitudes. The results presented in this paper were obtained for strong disturbances observed in October 2003. The paper shows a comparison for chosen quiet and strongly disturbed days. To avoid differences caused by changing position of the Sun (seasonal zenith angle changes), all the analysed information was related to the same period of time.  相似文献   

19.
Wave-like disturbances, caused by the launches of the Soyuz and Proton rockets from the Baikonur site, have been studied using the algorithm of the space-time accumulation of variations in the total electron content (TEC). Ionospheric TEC responses, observed on four GPS arrays at a distance of up to 4000 km from the launch site, represent a quasi-periodic oscillation with a period of 15–20 min, duration of 30–40 min, and amplitude of 0.1 TECU. The propagation velocity of wave-like disturbances is 300–1400 m/s, which corresponds to the range of sonic and supersonic velocities at an altitude of the ionospheric ionization maximum. Wave-like disturbances of TEC are caused by acoustic gravity waves (AGWs) propagating in the Earth’s atmosphere over large distances from a source. It has been established that the rocket launch region and rocket trajectory active legs, when a rocket moves under the action of the second and third operating stages of a propulsion device, are responsible for AGW generation.  相似文献   

20.
利用GPS监测电离层不均匀结构探讨   总被引:7,自引:0,他引:7       下载免费PDF全文
利用上海地区GPS综合应用网提供的高时空分辨率的双频GPS观测资料,研究了该区域内一电离层不均匀体的产生、消亡过程.首先,采用Kalman滤波的方法改善双频伪距之差的观测精度,并利用参数估计的方法计算该时段内相应的硬件延迟.再根据电离层单层模型,利用GPS双频观测量、测站位置和GPS精密星历,求出GPS信号穿刺点的坐标和垂直方向电离层的电子含量;然后内插并获取其等值线图.等值线图随时间的变化表明,受等离子体湍流的影响,2003年9月8日北京时间9时40分左右在38°N、118°E左右产生了一电离层不均匀体,其尺度大约在50km左右,生存时间大约为5min.受地球重力场和高空风场的影响,该不均匀体向东北方向扩散.然后,利用大气扩散模型,按扩散方程计算分析了该不均匀体可能发生的电离层层区.理论计算表明,该不均匀体发生在电离层扩展F区,高度在350km左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号