首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 INTRoDUCTIONThere are aiready several wide-field multi-fiber spectrograPhic surveys in various stages ofdevelopment, most notably the stellar popu1ation, galaxy and QSO suxveys using the 2dF faciLity as described by Lewis et al. (1998) and the Sloan Digital Sky Survey (SDSS) aJs summarizedby York et al. (2000), both of which are already underway, and those surveys planning to usethe 6dF facility as described by Wason et al. (2000) and the LAMOST facility as outllnedby Wang et a…  相似文献   

2.
We discuss causes of the formation of the observed kinematics and morphology of cones of ionized matter in the neighborhood of the nuclei of Seyfert galaxies. The results of linear stability analysis of an optically thin conic jet where radiation cooling and gravity play an important part are reported. The allowance for radiation cooling is shown to result in strong damping of all acoustic modes and to have insignificant effect on unstable surface Kelvin-Helmholtz modes. In the case of waveguide-resonance internal gravity modes radiative cooling suppresses completely the instability of waves propagating away from the ejection source and, vice versa, reduces substantially the growth time scale of unstable sourceward propagating modes. The results obtained can be used to study ionization cones in Seyfert galaxies with radio jets. In particular, our analysis shows that surface Kelvin-Helmholtz modes and volume harmonics are capable of producing regular features observed in optical emission-line images of such galaxies.  相似文献   

3.
4.
Gravitational perturbations in semimajor axis, eccentricity, and inclination resulting from close planetesimal encounters (near 1 AU) out to 10 Tisserand sphere of influence radii were calculated by two- and three-dimensional numerical integration. These are compared with the results of treating the encounter as a two-body problem, as is customary in Monte Carlo calculations of orbital evolution and in numerical and analytical studies of planetary accumulation. It is found that for values of (VVe) ? 0.35 (V = relative velocity, Ve = escape velocity of largest body), the two-body body approximation fails to describe the outcome of individual encounters. In this low-velocity region, the two-body “gravitational focusing” cross section is no longer valid; “anomalous gravitational focusing” often leads to bodies on distant unperturbed trajectories becoming close encounters and vice versa. In spite of these differences, average perturbations given by the two-body approximation are valid within a factor of 2 when VVe > 0.07. In this same velocity range the “Arnold extrapolation,” whereby a few very close encounters are used to estimate the effect of many more distant encounters, is found to be a useful approximation.  相似文献   

5.
Keiji Ohtsuki 《Icarus》2006,183(2):373-383
We derive an equation for the evolution of rotational energy of Keplerian particles in a dilute disk due to mutual collisions. Three-dimensional Keplerian motion of particles is taken into account precisely, on the basis of Hill's approximation. The Rayleigh distribution of particles' orbital eccentricities and inclinations, and the Gaussian distribution of their rotation rates are also taken into account. Performing appropriate variable transformation, we show that the equation can be expressed with two terms. The first term, which we call collisional stirring term, represents energy exchange between rotation and random motion via collisions. The second term, which we call rotational friction term, tends to equalize the mean rotational energy of particles with different sizes. The equation can describe the evolution of rotational energy of Keplerian particles with an arbitrary size distribution. We analytically evaluate the rates of stirring and friction for the random kinetic energy and rotational energy due to inelastic collisions, for non-gravitating particles in a dilute disk. Using these results, we discuss equilibrium states in a disk of spinning, non-gravitating Keplerian particles.  相似文献   

6.
7.
We present results of photometric observations under excellent seeing conditions of Shakbazian Compact Groups. We obtained the seeing‐unconvolved surface brightness profiles of individual galaxies in the I band. We also determined the BI color index for each galaxy, and investigated the presence of cores in the early type galaxies. We constructed models for the mass distribution of the individual galaxies. The mass‐to‐light (𝔐/L) ratios have normal values, and the conclusion that these groups have little dark matter is confirmed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present three-dimensional unsteady modeling and numerical simulations of a coronal active region, carried out within the compressible single-fluid MHD approximation. We focus on AR 9077 on 14 July 2000, and the triggering of the X5.7 GOES X-ray class “Bastille Day” flare. We simulate only the lower corona, although we include a virtual photosphere and chromosphere below. The boundary conditions at the base of this layer are set using temperature maps from line intensities and line-of-sight magnetograms (SOHO/MDI). From the latter, we generate vector magnetograms using the force-free approximation; these vector magnetograms are then used to produce the boundary condition on the velocity field using a minimum energy principle (Longcope, Astrophys. J. 612, 1181, 2004). The reconnection process is modeled through a dynamical hyper-resistivity which is activated when the current exceeds a critical value (Klimas et al., J. Geophys. Res. 109, 2218, 2004). Comparing the time series of X-ray fluxes recorded by GOES with modeled time series of various mean physical variables such as current density, Poynting energy flux, or radiative loss inside the active region, we can demonstrate that the model properly captures the evolution of an active region over a day and, in particular, is able to explain the initiation of the flare at the observed time.  相似文献   

9.
Active galactic nuclei, X-ray binaries, pulsars and gamma-ray bursts are all believed to be powered by compact objects surrounded by relativistic plasma flows driving phenomena such as accretion, winds and jets. These flows are often accurately modelled by the relativistic magnetohydrodynamic (MHD) approximation. Time-dependent numerical MHD simulations have proven to be especially insightful, but one regime that remains difficult to simulate is when the energy scales (kinetic, thermal, magnetic) within the plasma become disparate. We develop a numerical scheme that significantly improves the accuracy and robustness of the solution in this regime. We use a modified form of the weighted essentially non-oscillatory (WENO) method to construct a finite-volume general relativistic hydrodynamics code called wham that converges at fifth order. We avoid (1) field-by-field decomposition by adaptively reducing down to two-point stencils near discontinuities for a more accurate treatment of shocks and (2) excessive reduction to low-order stencils, as in the standard WENO formalism, by maintaining high-order accuracy in smooth monotonic flows. Our scheme performs the proper surface integral of the fluxes, converts cell-averaged conserved quantities to point-conserved quantities before performing the reconstruction step, and correctly averages all source terms. We demonstrate that the scheme is robust in strong shocks, very accurate in smooth flows and maintains accuracy even when the energy scales in the flow are highly disparate.  相似文献   

10.
We investigate in detail the kinematics and morphology of the Seyfert galaxy NGC 6104 in order to identify the mechanism of gas transportation to the active galactic nucleus (AGN). Our observational data were obtained at the 6-m Special Astrophysical Observatory telescope with the MPFS integral-field spectrograph and the SCORPIO universal device in three modes: direct imaging, a scanning Fabry—Perot interferometer, and long-slit spectroscopy. Images from the HST archive were invoked to study the structure of the circumnuclear region. An analysis of deep images has shown for the first time that NGC 6104 is in the phase of active merging with a companion galaxy. We have been able to study the detailed picture of ionized gas motions up to galactocentric distances of 14 kpc and to construct the stellar velocity field for the inner region. The radial gas motions toward the AGN along the central bar play a significant role at galactocentric distances of 1–5 kpc. In addition, we have detected an outflow of ionized gas from the nucleus that presumably resulted from the intrusion of a radio jet into the ambient interstellar medium. Using diagnostic diagrams, we estimate the contributions from the AGN and star formation to the galactic gas ionization. We estimate the bar pattern speed by the Tremaine-Weinberg method and show that the inner ring observed in the galaxy’s images has a resonant nature. Two possible ring formation scenarios, before and during the interaction with a companion, are discussed.  相似文献   

11.
The transit time of a pulsar signal is influenced by the density fluctuations of the interstellar plasma. This effect is calculated in the one-dimensional and spherically symmetrical case, using a WKB-type approximation for the transverse electric field. The influence is found to be small compared to Lerche's result, and the difference is explained by the fact that Lerche's formula refers to a mean signal.This work has been undertaken as part of the joint research programme of the Institut für Plasmaphysik and Euratom.  相似文献   

12.
13.
14.
Limb-darkening curves are derived from Pioneer 10 imaging data for Jupiter's STrZ (?18 to ?21° latitude) and SEBn (?5 to ?8° latitude) in red and blue light at phase angles of 12, 23, 34, 109, 120, 127, and 150°. Inhomogeneous scattering models are computed and compared with the data to constrain the vertical structure and the single-scattering phase functions of the belt and the zone in each color. The very high brightness observed at a 150° phase angle seems to require the presence of at lleast a thin layer of reasonably bright and strongly forward-scattering haze particles at pressure levelsof about 100 mbar or less above both belts and zones. Marginally successful models have been constructed in which a moderate optical thickness (τ ≥ 0.5) of haze particles was uniformly distributed in the upper 25 km-amagats of H2. Excellent fits to the data were obtained with models having a thin (optical depths of a few tenths) haze conentraated above most of the gas. Following recent spectrospcopicanalyses, we have placed the main “cloud” layer or layers beneath about 25 km-amagats of H2, although successful fits to our continuum data probably could be achieved also if the clouds were permitted to extend all the way up to the thin haze layer. Similarly, below the haze level our data cannot distinguish between models having two clouds separated by a clear space as suggested by R. E. Danielson and M. G. Tomasko and models with a single extensive diffuse cloud having an H2 abundance of a few kilometer-amagats per scattering mean free path as described by W. D. Cochran. In either case, the relative brightness of the planet at each phase angle primarily serves to constrain the single-scattering phase functions of the Jovian clouds at the corresponding scattering angles. The clouds in these models are characterized by single-scattering phase functions having strong forward peaks and modest backward-scattering peaks, indicating cloud particles with dimensions larger than about 0.6 μm. In our models, a lower single-scattering albedo of the cloud particles in the belt relative to the zone accounts for the contrast between these regions. If an increased abundance of absorbing dust above uniformly bright clouds is used to explain the contrast between belts and zones at visible wavelengths, the limb darkening is steeper than that observed for the SEBn in blue light at small phase angles. The phase integral for the planet calculated for either the belt or the zone model in either color lies in the range 1.2 to 1.3. If a value of 1.25 is used with D.J. Taylor's bolometric geometric albedo of 0.28, the planet emits 2.25 or 1.7 times the energy it absorbs from the Sun if it effective temperature is 134 or 125°K, respectively—roughly as expected from current theories of the cooling of Jupiter's interior.  相似文献   

15.
This study utilizes the NCAR Land Surface Model (LSM1.2) integrated with dynamic global vegetation to recreate the early Paleogene global distribution of vegetation and to examine the response of the vegetation distribution to changes in climate at the Paleocene–Eocene boundary (∼ 55 Ma). We run two simulations with Eocene geography driven by climatologies generated in two atmosphere global modeling experiments: one with atmospheric pCO2 at 560 ppm, and another at 1120 ppm. In both scenarios, the model produces the best match with fossil flora in the low latitudes. A comparison of model output from the two scenarios suggests that the greatest impact of climate on vegetation will occur in the high latitudes, in the Arctic Circle and in Antarctica. In these regions, greater accumulated summertime warmth in the 1120 ppm simulation allows temperate plant functional types to expand further poleward. Additionally, the high pCO2 scenario produces a greater abundance of trees over grass at these high latitudes. In the middle and low latitudes, the general distribution of plant functional types is similar in both pCO2 scenarios. Likely, a greater increment of greenhouse gases is necessary to produce the type of change evident in the mid-latitude paleobotanical record. Overall, differences between model output and fossil flora are greatest at high latitudes.  相似文献   

16.
17.
D Luz  F Hourdin 《Icarus》2003,166(2):328-342
We present a numerical study of barotropic waves in Titan's stratosphere based on a shallow-water model. The forcing of the zonal flow by the mean meridional circulation is represented by a relaxation towards a barotropically unstable wind profile. The relaxation profile is consistent with observations and with previous results from a 3D general circulation model. The time constant of the forcing that best matches the northward eddy-transport of zonal momentum from the 3D model is τ∼5 Titan days. The eddy wind field is a zonal wavenumber-2 wave with a peak amplitude about 10% of the mean wind speed. The latitudinal transport of angular momentum by the wave tends to keep the flow close to marginal stability by carrying momentum upgradient, from the core of the jets into the low latitudes. Although the strongest eddy motions occur at the latitudes of the wind maxima, the strongest mixing takes place at the barotropically unstable regions, close to ±30° and spanning about 30° in latitude. An eddy-mixing time constant of the order of 1 Titan day is inferred within these regions, and of a few tens of days within regions of stable flow. Horizontal gradients in transient tracer fields are less than 10% of the latitudinal gradient of the meridional tracer profile. Cassini's detection of such waves could provide a direct observation of wind speeds at stratospheric levels.  相似文献   

18.
Abstract— Currently, 44 distinct meteorites are recorded from the Nullarbor Region in Western Australia. Recovery data for the Billygoat Donga, Cardanumbi, Cocklebiddy, Forrest Lakes, Laundry East, Lookout Hill, North East Reid, North Reid, Reid, Webb, West Forrest, West Reid and Yayjinna meteorites are amended, and North Forrest is recognized as distinct from North West Forrest (H). Since 1971, the recovery of more than 500 specimens (predominantly ordinary chondrites) from the desert has made the Nullarbor Region one of the most productive areas of the world for meteorite recoveries and has caused major problems for meteorite nomenclature. To overcome a lack of geographical names, we have delineated a grid of 47 named ‘areas’ in the Nullarbor Region. Henceforth, distinct meteorites will take the name of the ‘area’ in which they are found and a number (e.g., 001) in order of discovery. In general, the names of past recoveries remain unchanged. The absence of transportation processes in the region, and accurate documentation of the distribution of finds allows ‘pairing’ of specimens to at least 90% level of confidence.  相似文献   

19.
Small but macroscopic particles—chondrules, higher temperature mineral inclusions, metal grains, and their like—dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and we compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust and to their diffusion in the nebula, which we explore separately.  相似文献   

20.
《New Astronomy》2007,12(3):169-181
The main performance bottleneck of gravitational N-body codes is the force calculation between two particles. We have succeeded in speeding up this pair-wise force calculation by factors between 2 and 10, depending on the code and the processor on which the code is run. These speed-ups were obtained by writing highly fine-tuned code for x86_64 microprocessors. Any existing N-body code, running on these chips, can easily incorporate our assembly code programs.In the current paper, we present an outline of our overall approach, which we illustrate with one specific example: the use of a Hermite scheme for a direct N2 type integration on a single 2.0 GHz Athlon 64 processor, for which we obtain an effective performance of 4.05 Gflops, for double-precision accuracy. In subsequent papers, we will discuss other variations, including the combinations of N log N codes, single-precision implementations, and performance on other microprocessors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号