首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45–150 µm, 1–2 mm, and 5–10 mm) of crushed coal were performed at 40 °C and 35 °C over a pressure range of 1.4–6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45–150 μm size fraction compared to the two coarser fractions.  相似文献   

2.
The majority of coalbed methane(CBM) in coal reservoirs is in adsorption states in coal matrix pores. To reveal the adsorption behavior of bituminous coal under high-temperature and high-pressure conditions and to discuss the microscopic control mechanism affecting the adsorption characteristics, isothermal adsorption experiments under hightemperature and high-pressure conditions, low-temperature liquid nitrogen adsorption-desorption experiments and CO2 adsorption experiments were performed on coal samples. Results show that the adsorption capacity of coal is comprehensively controlled by the maximum vitrinite reflectance(Ro, max), as well as temperature and pressure conditions. As the vitrinite reflectance increases, the adsorption capacity of coal increases. At low pressures, the pressure has a significant effect on the positive effect of adsorption, but the effect of temperature is relatively weak. As the pressure increases, the effect of temperature on the negative effect of adsorption gradually becomes apparent, and the influence of pressure gradually decreases. Considering pore volumes of pores with diameters of 1.7-100 nm, the peak volume of pores with diameters 10-100 nm is higher than that from pores with diameters 1.7-10 nm, especially for pores with diameters of 40-60 nm, indicating that pores with diameters of 10-100 nm are the main contributors to the pore volume. The pore specific surface area shows multiple peaks, and the peak value appears for pore diameters of 2-3 nm, indicating that this pore diameter is the main contributor to the specific surface area. For pore diameters of 0.489-1.083 nm, the pore size distribution is bimodal, with peak values at 0.56-0.62 nm and 0.82-0.88 nm. The adsorption capability of the coal reservoir depends on the development degree of the supermicroporous specific surface area, because the supermicroporous pores are the main contributors to the specific pore area. Additionally, the adsorption space increases as the adsorption equilibrium pressure increases. Under the same pressure, as the maximum vitrinite reflectance increases, the adsorption space increases. In addition, the cumulative reduction in the surface free energy increases as the maximum vitrinite reflectance increases. Furthermore, as the pressure increases, the surface free energy of each pressure point gradually decreases, indicating that as the pressure increases, it is increasingly difficult to adsorb methane molecules.  相似文献   

3.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

4.
页岩气吸附机理的研究对于页岩气成藏和储量评价具有重要意义.甲烷在地层温度和压力条件下处于超临界状态,页岩气的吸附实际上为超临界吸附,但其机理目前尚不明确.在建立Ono-Kondo格子模型的基础上,结合低温氮气吸附和高压甲烷等温吸附实验,对龙马溪组页岩的微观孔隙结构和超临界吸附曲线进行了分析.结果表明,页岩中发育的孔隙尺度较小,比表面积较大,吸附气主要赋存于微孔和中孔中;页岩的等温吸附曲线在压力较大时,必然存在下降的趋势,这并非异常现象,而是超临界甲烷过剩吸附量的本质特征.Ono-Kondo格子模型对页岩高压等温吸附曲线的拟合效果很好,相关系数均在0.99以上,说明该模型可以表征页岩纳米孔隙中超临界甲烷的吸附特征.基于拟合得到的吸附相密度可将过剩吸附量转换为绝对吸附量,并直接计算地层温度和压力下甲烷的吸附分子层数,计算层数均小于1,表明甲烷分子并没有铺满整个孔隙壁面.因此受流体性质、吸附剂吸附能力和孔隙结构3个方面的影响,页岩气的吸附机理为单层吸附,不可能为双层甚至多层吸附.   相似文献   

5.
Carbon dioxide (CO2) is considered to be the most important greenhouse gas in terms of overall effect. CO2 geological storage in coal beds is of academic and industrial interest because of economic synergies between greenhouse gas sequestration and coal bed methane (CH4) recovery by displacement/adsorption. Previously, most work focused on either theoretical analyses and mathematical simulations or gas adsorption?Cdesorption experiments using coal particles of millimeter size or smaller. Those studies provided basic understanding of CH4 recovery by CO2 displacement in coal fragments, but more relevant and realistic investigations are still rare. To study the processes more realistically, we conducted experimental CH4 displacement by CO2 and CO2 sequestration with intact 100?×?100?×?200?mm coal specimens. The coal specimen permeability was measured first, and results show that the permeability of the specimen is different for CH4 and CO2; the CO2 permeability was found to be at least two orders of magnitude greater than that for CH4. Simultaneously, a negative exponential relationship between the permeability and the applied mean stress on the specimen was found. Under the experimental stress conditions, 17.5?C28.0 volumes CO2 can be stored in one volume of coal, and the displacement ratio CO2?CCH4 is as much as 7.0?C13.9. The process of injection, adsorption and desorption, displacement, and output of gases proceeds smoothly under an applied constant pressure differential, and the CH4 content in the output gas amounted to 20?C50% at early stages, persisting to 10?C16% during the last stage of the experiments. Production rate and CH4 fraction are governed by complex factors including initial CH4 content, the pore and fissure fabric of the coal, the changes in this fabric as the result of differential adsorption of CO2, the applied stress, and so on. During CO2 injection and CH4 displacement, the coal can swell from effects of gas adsorption and desorption, leading to changes in the microstructure of the coal itself. Artificial stimulation (e.g. hydraulic fracturing) to improve coalbed transport properties for either CO2 sequestration or enhanced coal bed methane recovery will be necessary. The interactions of large-scale induced fractures with the fabric at the scale of observable fissures and fractures in the laboratory specimens, as well as to the pore scale processes associated with adsorption and desorption, remain of profound interest and a great challenge.  相似文献   

6.
查明颗粒煤超临界态甲烷吸附相密度特征是研究温度、压力影响煤样吸附甲烷量的基础。选用安阳–鹤壁煤田鹤壁六矿与龙山矿颗粒煤样,借助磁悬浮天平等温吸附仪测量温度为308、313和318 K,压力为1~24 MPa下的等温吸附线。利用截距法、Langmuir三元模型拟合法与液相密度法分别计算超临界甲烷吸附饱和时的吸附相密度,分析其影响因素,并通过定吸附相体积的方法,一方面计算未吸附饱和时的吸附相密度,对峰值型拐点与过剩吸附量出现负值的实验现象进行解释,另一方面校正出较为理想的绝对吸附量。吸附相密度的计算结果表明,甲烷吸附相密度受温度、压力和煤变质程度的影响:随温度升高而降低,随压力升高先快速增加,后逐渐变缓,测量范围内吸附饱和时,无烟煤吸附相密度为121.60~136.17 kg/m3,贫瘦煤为73.29~76.96 kg/m3;绝对吸附量的计算结果表明,采用液相密度法校正出的绝对吸附量会出现负值,明显与实际不符,用截距法和Langmuir三元模型法校正的绝对吸附量会因实验条件的变化而改变,结合吸附常数b值的变化规律,发现用Langmuir三元模型法描述超临界甲烷的吸附行为最为恰当。   相似文献   

7.
页岩甲烷吸附能力是决定页岩气井开采方案的重要参数,对评估页岩气藏潜力意义重大。干酪根类型、总有机碳含量、矿物组成、成熟度和孔径等是影响页岩吸附性能的因素,但针对高温高压下过剩吸附现象对页岩甲烷吸附能力影响的研究还需开展进一步的探索。为揭示四川盆地东北地区五峰组页岩甲烷吸附能力,本文通过场发射扫描电镜、低温氮气吸附和高压甲烷吸附实验,研究了高温高压下页岩的甲烷吸附能力,并分析了页岩孔隙结构等对页岩吸附能力的影响。结果表明:①五峰组页岩孔隙结构非均质性强,发育有机孔隙、粒(晶)间孔隙、粒(晶)内孔隙和粒(晶)间溶孔等多种孔隙;②比表面积平均为19.1282m^2/g;孔体积平均为0.0195cm^3/g;孔径平均为5.2226nm;③修正后的饱和吸附气量为2.56m^3/t;④五峰组页岩甲烷吸附性能受控于比表面积、孔体积;有机质含量越大、有机质热演化程度越低,其甲烷吸附性能越强;⑤孔隙结构是影响页岩甲烷吸附能力的重要内因。同时指出低压条件下的实验吸附曲线不适合直接评价页岩甲烷吸附能力。  相似文献   

8.
Gas adsorption isotherms of Akabira coals were established for pure carbon dioxide (CO2), methane (CH4), and nitrogen (N2). Experimental data fit well into the Langmuir model. The ratio of sorption capacity of CO2, CH4, and N2 is 8.5:3.5:1 at a lower pressure (1.2 MPa) regime and becomes 5.5:2:1 when gas pressure increases to 6.0 MPa. The difference in sorption capacity of these three gases is explained by differences in the density of the three gases with increasing pressure. A coal–methane system partially saturated with CH4 at 2.4 MPa adsorption pressure was experimentally studied. Desorption behavior of CH4 by injecting pure CO2 (at 3.0, 4.0, 5.0, and 6.0 MPa), and by injecting the CO2–N2 mixture and pure N2 (at 3.0 and 6.0 MPa) were evaluated. Results indicate that the preferential sorption property of coal for CO2 is significantly higher than that for CH4 or N2. CO2 injection can displace almost all of the CH4 adsorbed on coal. When modeling the CH4–CO2 binary and CH2–CO2–N2 ternary adsorption system by using the extended Langmuir (EL) equation, the EL model always over-predicted the sorbed CO2 value with a lower error, while under-predicting the sorbed CH4 with a higher error. A part of CO2 may dissolve into the solid organic structure of coal, besides its competitive adsorption with other gases. According to this explanation, the EL coefficients of CO2 in EL equation were revised. The revised EL model proved to be very accurate in predicting sorbed ratio of multi-component gases on coals.  相似文献   

9.
In this paper, we used a theoretical model for the variation of Eulerian porosity, which takes into account the adsorption process known to be the main mechanism of production or sequestration of gas in many reservoir of coal. This process is classically modeled using Langmuir's isotherm. After implementation in Code_Aster, a fully coupled thermo‐hydro‐mechanical analysis code for structures calculations, we used numerical simulations to investigate the influence of coal's hydro‐mechanical properties (Biot's coefficient, bulk modulus), Langmuir's adsorption parameters, and the initial liquid pressure in rock mass during CO2 injection in coal. These simulations showed that the increase in the values of Langmuir's parameters and Biot's coefficient promotes a reduction in porosity because of the adsorption process when the gas pressure increases. Low values of bulk modulus increase the positive effect (i.e., increase) of hydro‐mechanical coupling on the porosity evolution. The presence of high initial liquid pressure in the rock mass prevents the progression of injected gas pressure when CO2 dissolution in water is taken into account. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Complete sorption isotherm characteristics of methane and CO2 were studied on fourteen sub-bituminous to high-volatile bituminous Indian Gondwana coals. The mean vitrinite reflectance values of the coal samples are within the range of 0.64% to 1.30% with varying maceral composition. All isotherms were conducted at 30 °C on dry, powdered coal samples up to a maximum experimental pressure of ~ 7.8 MPa and 5.8 MPa for methane and CO2, respectively.The nature of the isotherms varied widely within the experimental pressure range with some of the samples remained under-saturated while the others attained saturation. The CO2 to methane adsorption ratios decreased with the increase in experimental pressure and the overall variation was between 4:1 and 1.5:1 for most of the coals. For both methane and CO2, the lower-ranked coal samples generally exhibited higher sorption affinity compared to the higher-ranked coals. However, sorption capacity indicates a U-shaped trend with rank. Significant hysteresis was observed between the ad/desorption isotherms for CO2. However, with methane, hysteresis was either absent or insignificant. It was also observed that the coal maceral compositions had a significant impact on the sorption capacities for both methane and CO2. Coals with higher vitrinite contents showed higher capacities while internite content indicated a negative impact on the sorption capacity.  相似文献   

11.
不同煤级煤及其萃余物吸附性能的研究   总被引:7,自引:0,他引:7  
张小东  秦勇  王桑勋 《地球化学》2006,35(5):567-574
采用不同溶剂对褐煤、焦煤、低级无烟煤(Ro,max2.62%)以及中级无烟煤(Ro,max3.74%)等四个煤级煤样进行分级超声萃取,然后对原煤和萃余物进行平衡水预湿的方法,进行了等温吸附实验,并结合孔隙结构测试和水分含量变化,分析了溶剂萃取后萃余物的吸附性能变化及其影响因素。研究发现:(1)平衡水条件下,原煤对甲烷的吸附能力要大于萃余物,萃取后,尽管煤的组成和孔隙结构发生了变化,但并不能改变不同煤级煤吸附甲烷的能力的对比关系;(2)原煤和各级萃余物都发生了到某一压力后,吸附量随着压力增加而下降的现象,褐煤及其萃余物甚至出现负值,这可能是由超临界状态下吸附相的体积忽视后带来的效应和煤基质在压力、水分作用发生膨胀以及随着压力增加,水分在吸附孔隙中占据吸附点位的增多,造成甲烷有效吸附点位的减少等综合作用的结果。研究认为,在讨论影响不同煤化作用的煤吸附能力的因素时,应该首先考虑到煤级对吸附能力的影响;对煤化程度相近的煤,其他因素如孔隙结构和水分的变化对吸附的影响才显现,但对不同煤级煤吸附性的主要影响因素也不尽相同。在煤层气吸附研究中,吸附量下降现象应该是一个共性,其机理的解释和寻求正确的吸附相体积校正,以及一定压力下,煤基质在水分作用下发生膨胀对吸附性的影响的规律描述,都是亟待解决的重要问题。  相似文献   

12.
A theoretical model for gas adsorption-induced coal swelling   总被引:6,自引:2,他引:6  
Swelling and shrinkage (volumetric change) of coal during adsorption and desorption of gas is a well-known phenomenon. For coalbed methane recovery and carbon sequestration in deep, unminable coal beds, adsorption-induced coal volumetric change may cause significant reservoir permeability change. In this work, a theoretical model is derived to describe adsorption-induced coal swelling at adsorption and strain equilibrium. This model applies an energy balance approach, which assumes that the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid. The elastic modulus of the coal, gas adsorption isotherm, and other measurable parameters, including coal density and porosity, are required in this model. Results from the model agree well with experimental observations of swelling. It is shown that the model is able to describe the differences in swelling behaviour with respect to gas species and at very high gas pressures, where the coal swelling ratio reaches a maximum then decreases. Furthermore, this model can be used to describe mixed-gas adsorption induced-coal swelling, and can thus be applied to CO2-enhanced coalbed methane recovery.  相似文献   

13.
煤体性质对煤吸附容量的控制作用探讨   总被引:4,自引:2,他引:4  
煤体性质是影响煤吸附容量的重要因素之一。通过对中国华北和西北两个重要煤层气富集区煤的煤岩学、煤化学和等温吸附实验分析,从煤级、显微组分、煤体变形三个方面对煤的吸附容量及其控制因素进行了, 分析探讨。结果表明,水分平衡条件下煤的吸附容量与煤阶的关系为倒U字型,吸附容量随煤阶的变化为跃变式, 基本与四次煤化作用跃变阶段相对应,主要受控于煤化作用过程中煤的亲甲烷能力和孔隙度的变化;煤体中惰质组含量较高时,其对煤体的吸附容量的影响较为明显,主要与惰质组中丝质体的高吸附能力有关;在构造应力作用下,煤体表面物化发生的变化使构造煤吸附容量比同一矿区同一煤层原生结构煤高。  相似文献   

14.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

15.
The Huntly coalfield has significant coal deposits that contain biogenically-sourced methane. The coals are subbituminous in rank and Eocene in age and have been previously characterised with relatively low to moderate measured gas (CH4) contents (2–4 m3/ton). The CO2 holding capacity is relatively high (18.0 m3/ton) compared with that of CH4 (2.6 m3/ton) and N2 (0.7 m3/ton) at the same pressure (4 MPa; all as received basis). The geothermal gradient is also quite high at 55 °C/km.A study has been conducted which simulates enhancement of methane recovery (ECBM) from these deposits using a new version of the TOUGH2 (version 2) reservoir simulator (ECBM-TOUGH2) that can handle non-isothermal, multi-phase flows of mixtures of water, CH4, CO2 and N2. The initial phase of the simulation is CH4 production for the first 5 years of the field history. The model indicates that methane production can be significantly improved (from less than 80% recovery to nearly 90%) through injection of CO2. However, although an increase in the rate of CO2 injection increases the amount of CO2 sequestered, the methane recovery (because of earlier breakthrough with increasing injection rate) decreases. Modeling of pure N2 injection produced little enhanced CH4 production. The injection of a hypothetical flue gas mixture (CO2 and N2) also produced little increase in CH4 production. This is related to the low adsorption capacity of the Huntly coal to N2 which results in almost instantaneous breakthrough into the production well.  相似文献   

16.
Carbon dioxide is known as a hazardous material with acidic property that can be found as impurity in natural gas reservoirs with a broad range of 2 up to 40 %. Therefore, many efforts have been directed to remove and separate carbon dioxide from methane to prevent corrosion problems as well as improving the natural gas energy content. In this study, two molecular sieves, silicoaluminophosphate-34 (SAPO-34) zeotype and T-type zeolite, were synthesized by the hydrothermal method for the comparative study of adsorptive separation of carbon dioxide from methane. The synthesized adsorbents were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Brunner–Emmett–Teller techniques. These characterization tests confirmed formation of both materials with acceptable crystallinity. Both adsorbents were tested in equilibrium adsorption experiments in order to evaluate maximum capacity and adsorption affinity. Adsorption capacity of carbon dioxide and methane on SAPO-34 and zeolite T were measured in a pressure range of 0.1–2.0 MPa and temperature of 288, 298, and 308 K and fitted with the Sips and Langmuir isotherm models. The ideal selectivity of CO2/CH4 was determined for SAPO-34 and zeolite T at the studied pressures and temperatures, indicating that the molecular sieves can be properly used for CO2–CH4 separation or CO2 capturing from natural gas.  相似文献   

17.
基于吸附势理论、气体状态方程,建立了煤储层压力与煤体吸附半径、孔隙半径与煤体吸附量、储层压力与煤体吸附量之间的关系模型,得出储层压力、吸附量、孔隙半径等多参数耦合的煤层气吸附量动态变化模型,利用潘庄区块煤体结构测试数据以及等温吸附试验结果对模型进行了验证。结果表明:潘庄区块以孔径小于7.7 nm的微孔为主,以孔径7.7 nm为临界点孔容呈先减小后增大趋势;模型计算的吸附量动态变化结果与煤体空气干燥基等温吸附变化结果在趋势上具有较高的一致性,模型的起始点为枯竭压力以及枯竭吸附量,得出潘庄区块枯竭吸附量为3 m3/t。模型不仅能够计算地层条件下不同温度和压力共同作用下煤体对甲烷气体的吸附量,且能够预测煤层气排采过程煤层气吸附量的动态变化,有助于确定煤层气排采工作制度以及提高煤层气采收率。   相似文献   

18.
There is still no clear understanding of the specific interactions between coal and gas molecules. In this context sorption–desorption studies of methane and carbon dioxide, both in a single gas environment and gas mixtures, are of fundamental interest. This paper presents the results of unique simultaneous measurements of sorption kinetics, volumetric strain and acoustic emission (AE) on three tetragonal coal samples subjected to sorption of carbon dioxide and methane mixtures. The coal was a high volatile bituminous C coal taken from the Budryk mine in the Upper Silesia Basin, Poland. Three different gas mixtures were used in the sorption tests, with dominant CO2, with dominant CH4 and a 50/50 mixture.The experimental set-up was designed specially for this study. It consisted of three individual units working together: (i) a unit for gas sorption experiments using a volumetric method, (ii) an AE apparatus for detecting, recording and analysing AE, and (iii) a strain meter for measuring strains induced in the coal sample by gas sorption/desorption. All measurements were computer aided.The experiments indicated that the coal tested showed preferential sorption of CH4 at 2.6 MPa pressure and exhibited comparable affinities for CH4 and CO2 at higher pressures (4.0 MPa). The results of chromatographic analysis of the gas released on desorption suggested that the desorption of methane from the coal was favoured. The relationship between the volumetric strain and the amount of sorbed gas was found to be non-linear. These results were contrary to common opinions on the coal behaviour. Furthermore, it appeared that the swelling/shrinkage of coal was clearly influenced by the network of fractures. Besides, the AE and strain characteristics suggested common sources of sorption induced AE and strain.The present results may have implications for the sequestration of carbon dioxide in coal seams and enhanced coalbed methane recovery (ECBM).  相似文献   

19.
中煤级煤吸附甲烷的物理模拟与数值模拟研究   总被引:3,自引:0,他引:3  
傅雪海  秦勇  权彪  范炳恒  王可新 《地质学报》2008,82(10):1368-1371
基于184个中煤级(镜质组最大反射率Ro,max介于0.65%~2.50%)煤在平衡水条件下的等温吸附实验成果,模拟了中煤级煤的朗格缪尔体积和压力与煤级的关系,建立了不同埋深(温度、压力)条件下不同煤级煤饱和吸附气量量板,探讨了压力和温度对中煤级煤吸附甲烷能力的综合效应,对比分析了中煤级煤吸附特征与低、高煤级煤的差异,提出了中煤级煤吸附气量预测的方法。  相似文献   

20.
CBM and CO2-ECBM related sorption processes in coal: A review   总被引:1,自引:0,他引:1  
This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams.Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters.Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach.In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank.Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes.This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号