首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is a report of geological observations made using the submersible ALVIN on the crest of the East Pacific Rise near 21°N. The profile is 6 km long and crosses a 5–10 km wide plateau which rises 100 m±above the rise flanks. At the axis are exposed fresh glassy pillow lavas with no sediment accumulation in a region termed the neovolcanic zone. This zone is about one kilometer wide and includes elongate ridges of pillow lavas and seventeen hydrothermal vent fields in the study area. Outside the neovolcanic zone the seafloor is extensively fissured in another zone which is up to two kilometers wide. The neovolcanic zone and the fissured zone are included within a rift valley or graben about 3 to 5 km wide and 50 m±deep. This rift valley is asymmetrically located on the west side of the axial plateau; the neovolcanic zone in the study area is asymmetrically located on the east side of the rift graben. Fissured crust is not common outside the rift graben or in the neovolcanic zone; similarly, large throw faults such as those which form the edges of the graben are not found outside of it. These observations can be interpreted according to a volcanic-tectonic cycle in which volcanic eruptions and hydrothermal circulation are followed by a tectonic phase which includes fissuring and vertical movements. When a new cycle starts it may involve a lateral shift of the spreading axis. Lavas along the dive profile are suggested to be no older than a few thousand years based on sediment accumulation. In contrast, seafloor spreading rates here predict crust up to 105 yr old. This observation suggests that lavas from the neovolcanic zone can spread laterally about a kilometer or more and overlap on older crust.  相似文献   

2.
In 1994, a joint Japanese-American dive program utilizing the worlds deepest diving active research submersible (SHINKAI 6500) was carried out at the western ridge-transform intersection (RTI) of the Mid-Atlantic Ridge and Kane transform in the central North Atlantic Ocean. A total of 15 dives were completed along with surface-ship geophysical mapping of bathymetry, magnetic and gravity fields. Dives at the RTI traced the neovolcanic zone up to, and for a short distance (2.5 km) along, the Kane transform. At the RTI, the active trace of the transform is marked by a narrow valley (<50 m wide) that separates the recent lavas of the neovolcanic zone from the south wall of the transform. The south wall of the transform at the western RTI consists of a diabase section near its base between 5000 and 4600 m depth overlain by basaltic lavas, with no evidence of gabbro or deeper crustal rocks. The south wall is undergoing normal faulting with considerable strike-slip component. The lavas of the neovolcanic zone at the RTI are highly magnetized (17 A m–1) compared to the lavas of the south wall (4 A m–1), consistent with their age difference. The trace of the active transform changes eastwards into a prominent median ridge, which is composed of heavily sedimented and highly serpentinized peridotites. Submersible observations made from SHINKAI find that the western RTI of the Kane transform has a very different seafloor morphology and lithology compared to the eastern RTI. Large rounded massifs exposing lower crustal rocks are found on the inside corner of the eastern RTI whereas volcanic ridge and valley terrain with hooked ridges are found on the outside corner of the eastern RTI. The western RTI is much less asymmetric with both inside and outside corner crust showing a preponderance of volcanic terrain. The dominance of low-angle detachment faulting at the eastern RTI has resulted in a seafloor morphology and architecture that is diagnostic of the process whereas crust formed at the WMARK RTI must clearly be operating under a different set of conditions that suppresses the initiation of such faulting.  相似文献   

3.
We report the results of a study of the magnetic properties of basalts recovered from the axis and from 0.7 m.y. old crust at 21° N and 19°30 S on the East Pacific Rise as well as from the 9°03 N overlapping spreading centers. The natural remanent magnetization of the samples from 21° N and 19°30 S decreases from the axis to 0.7 m.y. old crust as a result of low-temperature oxidation. In addition, the magnetic properties of the samples from the 21° N sites indicate that: (1) the magnetic susceptibility and the Koenigsberger ratio decrease with low-temperature alteration, (2) the Curie temperature, the median demagnetizing field and the remanent coercivity increase with maghemitization, (3) the saturation magnetization measured at room temperature does not change significantly with age. The magnetic properties of the basalt samples from the 9°03 N overlapping spreading centers indicate the presence of a high magnetization zone at the tip of the eastern spreading center. This high magnetization zone is the result of the high percentage of unaltered, fine-grained titanomagnetites present in the samples. These measurements are consistent with the results of the three-dimensional inversion of the magnetic field over the 9°03 N overlapping system [Sempere et al., 1984] as well as with detailed tectonic and geochemical investigations of overlapping spreading centers (Sempere and Macdonald, 1986a; Langmuir et al., 1986; Natland et al., 1986). The high magnetization zone appears to be the result of the eruption of highly fractionated basalts enriched in iron associated with the propagation of one of the limbs of the overlapping system into older lithosphere and not just to rapid decay, due to low-temperature oxidation, of the initially high magnetization of pillows extruded in the neovolcanic zone.  相似文献   

4.
We have conducted the first detailed survey of the recording of a geomagnetic reversal at an ultra-fast spreading center. The survey straddles the Brunhes/Matuyama reversal boundary at 19°30 S on the east flank of the East Pacific Rise (EPR), which spreads at the half rate of 82 mm yr-1. In the vicinity of the reversal boundary, we performed a three-dimensional inversion of the surface magnetic field and two-dimensional inversions of several near-bottom profiles including the effects of bathymetry. The surface inversion solution shows that the polarity transition is sharp and linear, and less than 3–4 km wide. These values constitute an upper bound because the interpretation of marine magnetic anomalies observed at the sea surface is limited to wavelengths greater than 3–4 km. The polarity transition width, which represents the distance over which 90% of the change in polarity occurs, is narrow (1.5–2.1 km) as measured on individual 2-D inversion profiles of near-bottom data. This suggests a crustal zone of accretion only 3.0–4.2 km wide. Our method offers little control on accretionary processes below layer 2B because the pillow and the dike layers in young oceanic crust are by far the most significant contributors to the generation of marine magnetic anomalies. The Deep-Tow instrument package was used to determine in situ the polarity of individual volcanoes and fault scarps in the same area. We were able to make 96 in situ polarity determinations which allowed us to locate the scafloor transition boundary which separates positively and negatively magnetized lava flows. The shift between the inversion transition boundary and the seafloor transition boundary can be used to obtain an estimate of the width of the neovolcanic zone of 4–10 km. This width is significantly larger than the present width of the neovolcanic zone at 19°30 S as documented from near-bottom bathymetric and photographic data (Bicknell et al., 1987), and also larger than the width of the neovolcanic zone at 21° N on the EPR as inferred by the three-dimensional inversion of near-bottom magnetic data (Macdonald et al., 1983). The eruption of positively magnetized lava flows over negatively magnetized crust from the numerous volcanoes present in the survey area and episodic flooding of the flanks of the ridge axis by extensive outpourings of lava erupting from a particularly robust magma chamber may result in a widened neovolcanic zone. We studied the relationship between spreading rate and polarity transition widths obtained from 2-D inversions of the near-bottom magnetic field over various spreading centers. The mean transition width corrected for the time necessary for the reversal to occur decreases with increasing spreading rate but our data set is still too sparse to draw firm conclusions from these observations. Perhaps more interesting is the fact that the range of the measured transition widths also decreases with spreading rate. In the light of these results, we propose a new model for the spreading rate dependency of polarity transition widths. At slow spreading centers, the zone of dike injection is narrow but the locus of crustal accretion is prone to small lateral shifts depending on the availability of magmatic sources, and the resulting polarity transition widths can be narrow or wide. At intermediate spreading centers, the zone of crustal accretion is narrow and does not shift laterally, which leads to narrower transition widths on the average than at slow spreading centers. An intermediate, or even a slow spreading center, may behave like a fast or hot-spot dominated ridge for short periods of time when its magmatic budget is increased due to melting events in the upper mantle. At fast spreading centers, the zone of dike injection is narrow, but the large magmatic budget of fast spreading centers may result in occasional extensive flows less than a few tens of meters thick from the axis and off-axis volcanic cones. These thin flows will not significantly contribute to the polarity transition widths, which remain narrow, but they may greatly increase the width of the neovolcanic zone. Finally the gabbro layer in the lower section of oceanic crust may also contribute to the observed polarity transition widths but this contribution will only become significant in older oceanic crust (50–100 m.y.).  相似文献   

5.
The rift valley at three widely separated sites along the Mid-Atlantic Ridge is characterized using geological and geophysical data. An analysis of bottom photographs and fine-scale bathymetry indicates that each study area has a unique detailed geology and structure. Spreading rates are apparently asymmetric at each site. Relationships between tectonic and volcanic structure and hydrothermal activity show that various stages in the evolution of the rift valley are most favorable for seafloor expression of hydrothermal activity. In a stage found at 26°08 N, site 1 (TAG), the rift valley is narrow, consisting of both a narrow volcanically active valley floor and inner walls with small overall slopes. High-temperature hydrothermal venting occurs along the faster spreading eastern inner wall of this U-shaped rift valley. Site 2 (16°46 N) has a narrow valley floor and wide block faulted walls and is at a stage where the rift valley is characterized by a V-shape. No neovolcanic zone is observed within the marginally faulted, predominantly sedimented floor and hydrothermal activity is not observed. The rift valley at site 3 (14°54 N), with postulated extrusive volcanic activity and a stage in valley evolution tending toward a U-shape, shows evidence of hydrothermal activity within the slightly faster spreading eastern inner wall. Evidence for tectonic activity (inward- and outward-facing faults and pervasive fissuring) exists throughout the wide inner wall. Hydrothermal activity appears to be favored within a U-shaped rift valley characterized by a narrow neovolcanic zone and secondarily faulted inner walls.  相似文献   

6.
GLORIA imagery of the Lau Basin north of 17°S shows several morphotectonic terrains: a basement ridge and sedimented inter-ridge area in the SE; a nascent triple junction in the NE; a deeply sedimented basinal terrain in the central area; a linear neovolcanic zone striking NNESSW in the NW; and the northern flank of a leaky transform, the Peggy Ridge. Extension is now being accommodated at two main areas of spreading, but as no site of persistent long-term backarc crustal accretion is evident in this 250-km-wide portion of the basin, we conclude that past extension was largely by formation of pull-apart basins and local magmatism.  相似文献   

7.
白垩纪以来太平洋上地幔组成和温度变化   总被引:1,自引:0,他引:1  
The geological evolution of the Earth during the mid-Cretaceous were shown to be anomalous, e.g., the pause of the geomagnetic field, the global sea level rise, and increased intra-plate volcanic activities, which could be attributed to deep mantle processes. As the anomalous volcanic activities occurred mainly in the Cretaceous Pacific, here we use basalt chemical compositions from the oceanic drilling(DSDP/ODP/IODP) sites to investigate their mantle sources and melting conditions. Based on locations relative to the Pacific plateaus, we classified these sites as oceanic plateau basalts, normal mid-ocean ridge basalts, and near-plateau seafloor basalts. This study shows that those normal mid-ocean ridge basalts formed during mid-Cretaceous are broadly similar in average Na8, La/Sm and Sm/Yb ratios and Sr-Nd isotopic compositions to modern Pacific spreading ridge(the East Pacific Rise). The Ontong Java plateau(125–90 Ma) basalts have distinctly lower Na8 and143Nd/144 Nd, and higher La/Sm and 87Sr/86 Sr than normal seafloor basalts, whereas those for the near-plateau seafloor basalts are similar to the plateau basalts, indicating influences from the Ontong Java mantle source. The super mantle plume activity that might have formed the Ontong Java plateau influenced the mantle source of the simultaneously formed large areas of seafloor basalts. Based on the chemical data from normal seafloor basalts, I propose that the mantle compositions and melting conditions of the normal mid-ocean ridges during the Cretaceous are similar to the fast spreading East Pacific Rise. Slight variations of mid-Cretaceous normal seafloor basalts in melting conditions could be related to the local mantle source and spreading rate.  相似文献   

8.
The southwestern margin of the Japan Arc evolved in the geodynamic regime of continental rifting during the Miocene–Pleistocene. This has been verified by broad manifestations of metasomatosis of mantle peridotites that underlie the lithosphere of the Japan Islands and by episodes of deep magmatism (kimberlites and melilitites) in the region. The high enrichment of deep melts in incompatible rare and rare earth elements is partially preserved in melts of regional basalts from smaller depths. In contrast, spreading basalts of the Sea of Japan and subduction basalts from the Nankai trench at the boundary with the Philippine Plate are extremely depleted in rare elements.  相似文献   

9.
As the Mesozoic sediments contribute most of the oil and gas reserves of the world, we present an integrated interpretation approach using magnetotellurics (MT) and surface geochemical prospecting studies to demarcate hydrocarbon prospective Gondwana (Mesozoic) formations underneath the Deccan flood basalts of Late Cretaceous age across Narmada-Tapti rift (between Bhusawal and Barwah) in Central India. The MT interpretation shows deep (∼5 km) basement structure between southern and central part of the MT profile however, it gradually becomes shallower to either ends of the profile with a predominant basement depth reduction in the northern end compared to the southern end. The geophysical results suggest thick (2-3.5 km) Mesozoic sediments in the area characterized by deep basement structure. The geochemical analysis of the near surface soil samples indicate higher concentrations of light gaseous hydrocarbons constituents over the area marked with thick sub-basalt Mesozoic formations. Analyses of the geochemical data imply that these hydrocarbons are genetically related, generated from a thermogenic source and these samples fall in the oil-producing zone. The temperature-depth estimations in the region supports favorable temperature conditions (80-120 °C) for oil generation at basement depths.  相似文献   

10.
The deep-circulation current in the North Pacific carries lower circumpolar deep water (LCDW), which is characterized by high dissolved oxygen and low echo intensity of reflected sound pulses. Using the characteristics of LCDW, we examined a branch current of the deep circulation passing through the Main Gap of the Emperor Seamounts Chain (ESC) by analyzing conductivity temperature depth profiler (CTD) data and data of velocity and echo intensity from a lowered acoustic Doppler current profiler (LADCP), which were obtained along 170°E immediately west of the ESC, along 180°W and 175°W over the northern slope of the Hess Rise, and along 165°W. The velocity and water characteristics showed that the eastern branch current of the deep circulation, which has penetrated into the Northwest Pacific Basin (NWPB) through Wake Island Passage, bifurcates around 30°N, 170°E in the NWPB into the westward main stream and a northward branch current, and that the latter current proceeds along the western side of the ESC and passes through the Main Gap of the ESC, flowing eastward. The current in the Main Gap at 170°E flows southeastward with eastward velocity cores around 4000 dbar and at depths greater than 4800 dbar centered at 5400 dbar. The current in the deeper core is stronger and reaches a maximum velocity of approximately 10 cm s?1. The eastward current in the Main Gap enters the Northeast Pacific Basin (NEPB) and flows eastward along the northern slope of the Hess Rise. As the current flows downstream, the characteristics of LCDW carried by the current are diluted gradually. To the east of the Hess Rise, the branch current joins another branch current of the deep circulation from the south carrying less-modified LCDW. As a result, LCDW carried from the Main Gap is renewed by mixing with the less-modified LCDW coming from the south. Carrying the mixed LCDW, the confluence flows eastward south of 37°N at 165°W toward the northeastern region of the NEPB, where the LCDW overturns and changes to North Pacific Deep Water (NPDW). NPDW is probably carried by the westward current in the upper deep layer north of 37°N at 165°W.  相似文献   

11.
北部湾玄武岩地幔源区性质的地球化学示踪及其构造环境   总被引:9,自引:0,他引:9  
北部湾发育一系列上新世玄武岩,其全岩K—Ar年龄为5.9—2.4Ma,是伴随北部湾盆地拉张而形成的一次较大规模的岩浆活动。岩石化学和微量元素地球化学研究表明,该玄武岩属于碱性玄武岩系,具有OIB型微量元素配分模式,形成于较均一的地幔源区,具有以EM2型地幔端元为主、混有HIMU和EMl型端元的地幔源区性质,形成于地幔柱或地幔热点的构造环境。北部湾盆地与红河剪切断裂带具有相同的地幔源区,而与受太平洋板块影响的地幔源区差别较大。玄武岩形成和北部湾盆地拉张主要受印度板块向欧亚板块俯冲导致的红河断裂带大规模剪切走滑控制,5Ma左右红河断裂带由左行走滑剪切转变为右行走滑剪切的构造性质转换可能是导致地幔异常扰动和岩浆活动的地球动力学机制。  相似文献   

12.
 Swath bathymetric, gravity, and magnetic studies were carried out over a 55 km long segment of the Central Indian Ridge. The ridge is characterized by 12 to 15 km wide rift valley bounded by steep walls and prominent volcanic constructional ridges on either side of the central rift valley. A transform fault at 7°45′S displaces the ridge axis. A mantle Bouguer anomaly low of −14 mGals and shallowing of rift valley over the middle of the ridge segment indicate along axis crustal thickness variations. A poorly developed neovolcanic zone on the inner rift valley floor indicate dominance of tectonic extension. The off-axis volcanic ridgs suggest enhanced magmatic activity during the recent past. Received: 24 May 1996 / Rivision received: 13 January 1997  相似文献   

13.
Petrological-geochemical data were obtained for intrusive rocks (gabbroids) recovered on the eastern flank of the Knipovich Ridge by deep-sea site 344 (DSDP, Leg 238). It was found that these rocks are similar to basalts and basaltic glasses studied in the adjacent sections of the ridge rift zone [7, 8]. This indicates that the intrusive rocks and erupted lavas are comagmatic. The gabbroids, basalts, and their quenched glasses were derived by differentiation in different-depth chambers and feeder channels. The petrochemical features of the gabbros and basalts (low Fe content, oxidized magnetic minerals) caused their weak magnetic properties. Owing to the multidirectional movements of the oceanic blocks, the bodies of the intrusive and effusive rocks their lost strict linearity and produced the mosaic anomalous magnetic field of the Knipovich Ridge.  相似文献   

14.
李力  高贺朋 《海洋工程》2018,36(5):74-82
针对深海玄武岩岩芯样品在高围压下难以破碎获得的问题,理论分析了金刚石与岩石的相互作用。采用单轴与三轴压缩实验,获得了模拟深海玄武岩的力学参数;基于颗粒流理论,建立了深海玄武岩线性平行黏结颗粒流数值模型,数值模拟高围压下金刚石颗粒破碎玄武岩的过程,获得了金刚石与玄武岩相互作用的动态力学响应规律,初步阐明金刚石破碎玄武岩机理。研究表明,玄武岩颗粒间黏接破坏主要为拉伸失效,玄武岩与金刚石接触力体现为周期应力,玄武岩产生间歇式裂隙扩散。理论分析与仿真结果基本吻合,表明建模与仿真的正确性,为深海便携式取芯钻机设计提供了理论基础与技术依据。  相似文献   

15.
The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.  相似文献   

16.
Earth’s fastest present seafloor spreading occurs along the East Pacific Rise near 31°–32° S. Two of the major hydrothermal plume areas discovered during a 1998 multidisciplinary geophysical/hydrothermal investigation of these mid-ocean ridge axes were explored during a 1999 Alvin expedition. Both occur in recently eruptive areas where shallow collapse structures mark the neovolcanic axis. The 31° S vent area occurs in a broad linear zone of collapses and fractures coalescing into an axial summit trough. The 32° S vent area has been volcanically repaved by a more recent eruption, with non-linear collapses that have not yet coalesced. Both sites occur in highly inflated areas, near local inflation peaks, which is the best segment-scale predictor of hydrothermal activity at these superfast spreading rates (150 mm/yr).  相似文献   

17.
Hydrocarbons in the form of gases, oils and waxes have been observed in the basalts of the Faeroe Islands in the North Atlantic. Gases and traces of oil were observed in the outflowing water of the deep Lopra-1 well drilled in 1981. The hydrocarbon gas was fairly dry, with stable isotopic ratios of δ13C1−3=−41.4; −32.4; −26.5% respectively, typical of a thermogenic gas. High temperature gas chromatography of the oil showed that it consisted mostly of C13−60 n-alkanes. Biomarker distribution observed by GC-MS indicates that the oil was derived from a mature source rock deposited in an anoxic environment; this suggests that the source rock must lie beneath the known basalts.Waxes exhibiting bright yellow fluorescence under UV light were observed as coatings on zeolite minerals widely distributed on the Faeroe Islands. The waxes consist predominantly of higher n-alkanes shown by HTGC. The fluorescence indicates the presence of aromatic compounds. Biomarker distribution indicated that the waxes were derived at least in part from a source rock containing some terrestrial organic matter astestified by the low amounts of oleanane present. The waxes were probably deposited from traces of oil present in deeply circulating waters in fractures within the basalts.Coals which had been suspected to generate some of the hydrocarbons observed in the Faeroese basalts were also examined. Vitrinite values of Ro=0.5% as well as GC-MS analyses of the Suduroy coal extracts showed that these coals are immature and have not generated significant hydrocarbons.  相似文献   

18.
在对CA海山玄武岩CAD21样品岩相学研究基础上,运用电子探针和X-荧光光谱法(XRF)对中太平洋CA海山斜长石斑晶中的环带、斜长石微晶和玄武岩中的硅酸盐进行了化学成分研究。CA海山玄武岩为地幔柱成因的板内玄武岩;斜长石斑晶具有环带结构,环带核部与边部为不连续消光,是不连续环带;环带核部为培长石,边部为拉长石,是岩浆演化过程中形成的正环带,其成因受岩浆演化过程中熔体组分及温、压条件的共同制约。斜长石斑晶核部、边部及斜长石微晶估算温度平均值分别为1 281,1 198和1 071 ℃,分别代表了岩浆源区、岩浆房及岩浆喷发温度,三者温度差值较小,这和洋岛玄武质岩浆的形成及喷发特点相吻合。  相似文献   

19.
This study reports the occurrence of anhydrite in hydrothermally altered pillow basalt (12°50.55′N, 103°57.62′W, water depth 2 480 m), which may have been produced in the basalt during seawater-basalt interaction in the laboratory. The existence of anhydrite in the altered basalt indicates extensive hightemperature hydrothermal alteration at the surface of seafloor pillow basalt. Microprobe analysis shows significant chemical zoning in the hydrothermally altered pillow basalt, in which Ca, Si and Al contents decrease and P, Fe, Mn, Cr and S contents increase from fresh basalt to altered basalt. The negative correlation between Rb-Sr and Li-Sr, and negative correlation between Li-Ca and Rb-Ca in the high-temperature vent fluids show that these fluids underwent anhydrite precipitation before fluid jetting due to mixing with seawater in the sub-seafloor. Based on these observations, we show that not all Ca in the anhydrite comes from basalt in the reaction zone, and that the basalts on the seafloor or in the upflow zone may also provide Ca for anhydrite.  相似文献   

20.
The relationship between the magnetic anomalies over Iceland and those over Reykjanes Ridge is investigated using the data of the 1965 Dominion Observatory survey. A method is developed for determining the two-dimensionality of the anomalies from the component data measured in this survey. This method is based on testing the first and the second derivative of the magnetic potential with respect to the direction of two-dimensionality, using the component data along a single flight line. Testing the first derivative also yields the direction of two-dimensionality. The outcomes of the two tests (based on a single line) are compared with the observed two-dimensionality (established by narrowly spaced earlier surveys) of Reykjanes Ridge, showing good agreement. As the outcomes of the two tests provide complementary information they are combined into a single factor: A. This factor of two-dimensionality is very low for the anomalies over the shelf of Iceland indicating that the anomalies over Iceland cannot be continued directly into those over Reykjanes Ridge. Over Iceland A is generally low. Over the neovolcanic zone in eastern Iceland twodimensionality is associated with long wavelengths that are not present in the spectrum of the anomalies over Reykjanes Ridge. Thus, Reykjanes Ridge-type anomalies are absent with the exception of the central anomaly. This may not be used as evidence against crustal spreading since the kinematic model proposed by Pálmason for Iceland has a wide transition zone between rock of opposite polarity. The same model if computed for a mid-ocean ridge has narrow transition zones. The larger width of the transition zone blurs the anomalies related to the reversals of the earth magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号