首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Oscillatory pumping tests—in which flow is varied in a periodic fashion—provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant‐rate pumping tests. During oscillatory testing, pressure data collected at non‐pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi‐analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the “sensed” extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.  相似文献   

2.
Optimized system to improve pumping rate stability during aquifer tests   总被引:1,自引:0,他引:1  
Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Substantial uncertainties in the flow rate across the borehole-formation interface can be induced by dynamic head losses, caused by rapid changes in borehole water levels early in an aquifer test. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system which employs commonly available components (including a datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flowmeters), is inexpensive, highly mobile, and easily set up. It optimizes the flow rate at the borehole-formation interface, making it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. No modifications to the control system were required, although a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically significant, constant flow rate with time. The range in pumping variability (95% confidence interval) was from +/- 2.58 x 10(-4) L/sec to +/- 9.07 x 10(-4) L/sec, across a wide range in field and aquifer conditions.  相似文献   

3.
Determination of Horizontal Aquifer Anisotropy with Three Wells   总被引:2,自引:0,他引:2  
Existing methods for the determination of horizontal aquifer anisotropy by means of pumping tests require a minimum of four wells, one for water withdrawal and three for drawdown observations. This paper shows how the same methods can be used to determine anisotropy with as few as three wells, if at least two of them can be pumped in sequence. A field example is included. A method of analyzing data from more wells than the above minimum, by least squares, is also described.  相似文献   

4.
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.  相似文献   

5.
This paper deals with water pumping cost minimization, in a confined infinite aquifer, proposing an alternate pulsed pumping schedule. The transient flow analysis is conducted for two wells with equal pumping rates. Specifically, two pumping schedules are analytically compared. In the first case, well users pump simultaneously, and in the second one they cooperate so that they pump alternately. This paper proves that the proposed alternate pumping schedule works as a stabilizer, reducing the high hydraulic drawdowns values, regardless of the aquifer characteristics. Moreover, pumping alternately is better in terms of pumping cost, compared to simultaneous pumping, though benefit become negligible as distance between wells becomes large. Two simplified equations are proposed, one to find the difference of the hydraulic drawdowns between the two pumping schedules and the other one to find the economic benefit of each well from cooperation. The equations are finally applied to a number of cases and their results are compared to the results obtained from an algorithm created to calculate the hydraulic drawdowns and the pumping cost, using the Theis equation. The results can be very useful in irrigation scheduling, as they can be applied to systems of well users/farmers, to reduce pumping cost.  相似文献   

6.
In the past, graphical or computer methods were usually employed to determine the aquifer parameters of the observed data obtained from field pumping tests. Since we employed the computer methods to determine the aquifer parameters, an analytical aquifer model was required to estimate the predicted drawdown. Following this, the gradient‐type approach was used to solve the nonlinear least‐squares equations to obtain the aquifer parameters. This paper proposes a novel approach based on a drawdown model and a global optimization method of simulated annealing (SA) or a genetic algorithm (GA) to determine the best‐fit aquifer parameters for leaky aquifer systems. The aquifer parameters obtained from SA and the GA almost agree with those obtained from the extended Kalman filter and gradient‐type method. Moreover, all results indicate that the SA and GA are robust and yield consistent results when dealing with the parameter identification problems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A new approach has been developed to detect, characterize, and quantify hydraulic short-circuits in boreholes with faulty seals. The methodology, applicable to an aquifer-aquitard-aquifer system, involves a series of successive, constant-rate pumping tests in the lower aquifer while determining the leakage rate with a simultaneous nonreactive tracer test. During each pumping step, the tracer is injected under constant concentration and constant hydraulic head from a piezometer in the upper aquifer. If a seal defect exists, the tracer will follow the leak and will be recovered from the pumped water. The theoretical equations relate the leakage rate, the pumping rate, the concentration of the injected tracer, and the recovered concentration. Leakage rates can be determined for any pumping rate. The theory is tested using numerical analysis and a full-scale field test.  相似文献   

8.
This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly affect the pesticide breakthrough time and maximum concentration at the well. The effect of the pumping rate on the pesticide concentration depends on the hydrogeology of the aquifer; in a layered aquifer, a high pumping rate resulted in a considerably different breakthrough than a low pumping rate, while in an aquifer with a stream the effect of the pumping rate was insignificant. Pesticide application history and properties have also a great impact on the effect of the pumping rate on the concentration at the well. The findings of the study show that variable pumping rates can generate temporal variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long‐term supply of safe groundwater. The fate of selected pesticides is examined, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well due to changes in pumping, wellhead management is important for managing pesticide concentrations.  相似文献   

9.
This paper derives an equivalent of Darcian Theis solution for non-Darcian flow induced by constant rate pumping of a well in a confined aquifer. The derivation, which is valid at later times only, is original. It utilizes Izbash's equation. This introduces an additional parameter to Darcian condition, namely, empirical exponent. The solution is a non-Drcian equivalent of Jacob straight line method for analyzing pumping tests at late times. It can be used to determine aquifer parameters: storativity, analogous hydraulic conductivity, and empirical exponent. However, while the Jacob method requires a minimum of only one pumping test with one observation well, the additional parameter in the present solution means that a minimum of two observation wells in one test or two pumping tests at different rates with one observation well are required. The derived solution is applied to a case study at Plomeur in Brittany, France, and is shown to provide a practical and efficient method for analyzing pumping tests where non-Darcian groundwater flow occurs.  相似文献   

10.
This paper reviews different borehole flowmeter analysis methods and evaluates their applicability to a test site composed of fluvial deposits. Results from tracer and aquifer tests indicate that the aquifer is highly heterogeneous and that low-K skin effects exist at the wells. Borehole flowmeter tests were performed at 37 wells. An appropriate method for calculating borehole flowmeter K values was developed based on results from multiwell pumping tests, single-well pumping tests, and slug tests. The flowmeter data produced 881 K values. The trends and the magnitude of the K values are consistent with results from geologic investigations, recirculating tracer tests, and large-scale multiwell pumping tests. The field tests illustrate that high-K deposits can significantly affect ground-water flows in some heterogeneous fluvial aquifers.  相似文献   

11.
Abstract. A method to calculate aquifer transmissivity, storage coefficient, and the leakage coefficient from pumping test data for a leaky aquifer is presented. The method is carried out by a computer program and is based on a minimization of the sum of squares of differences between drawdown in the observation well and the theoretical values from the Hantush and Jacob formula. No user defined starting points are necessary. Random error estimates for the parameters are given. Applications of the method are illustrated using data from pumping tests performed in leaky aquifers at the Cauca River Valley, Colombia.  相似文献   

12.
Yang SY  Yeh HD 《Ground water》2004,42(5):781-784
Slug test data obtained from tests performed in an unconfined aquifer are commonly analyzed by graphical or numerical approaches to determine the aquifer parameters. This paper derives three fourth-degree polynomials to represent the relationship between Bouwer and Rice's coefficients and the ratio of the screen length to the radius of the gravel envelope. A numerical approach using the nonlinear least squares and Newton's method is used to determine hydraulic conductivity from the best fit of the slug test data. The method of nonlinear least squares minimizes the sum of the squares of the differences between the predicted and observed water levels inside the well. With the polynomials, the hydraulic conductivity can be obtained by simply solving the nonlinear least squares equation by Newton's method. A computer code, SLUGBR, was developed from the derived polynomials using the proposed numerical approach. The results of analyzing two slug test datasets show that SLUGBR can determine hydraulic conductivity with very good accuracy.  相似文献   

13.
This paper presents a new semi‐analytical solution for a slug test in a well partially penetrating a confined aquifer, accounting for the skin effect. This solution is developed based on the solution for a constant‐flux pumping test and a formula given by Peres and co‐workers in 1989. The solution agrees with that of Cooper and co‐workers and the KGS model when the well is fully penetrating. The present solution can be applied to simulate the temporal and spatial head distributions in both the skin and formation zones. It can also be used to demonstrate the influences of skin type or skin thickness on the well water level and to estimate the hydraulic parameters of the skin and formation zones using a least‐squares approach. The results of this study indicate that the determination of hydraulic conductivity using a conventional slug‐test data analysis that neglects the presence of a skin zone will give an incorrect result if the aquifer has a skin zone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

15.
Traditional analysis methods used to determine hydraulic properties from pumping tests work well in many porous media aquifers, but they often do not work in heterogeneous and fractured‐rock aquifers, producing non‐plausible and erroneous results. The generalized radial flow model developed by Barker (1988) can reveal information about heterogeneity characteristics and aquifer geometry from pumping test data by way of a flow dimension parameter. The physical meaning of non‐integer flow dimensions has long been a subject of debate and research. We focus on understanding and interpreting non‐radial flow through high permeability conduits within fractured aquifers. We develop and simulate flow within idealized non‐radial flow conduits and expand on this concept by simulating pumping in non‐fractal random fields with specific properties that mimic persistent sub‐radial flow responses. Our results demonstrate that non‐integer flow dimensions can arise from non‐fractal geometries within aquifers. We expand on these geometric concepts and successfully simulate pumping in random fields that mimic well‐test responses seen in the Culebra Dolomite above the Waste Isolation Pilot Plant.  相似文献   

16.
A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.  相似文献   

17.
We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy . The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy , is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy .  相似文献   

18.
A new method for the interpretation of pumping tests in leaky aquifers   总被引:4,自引:0,他引:4  
A novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The method is based on the analysis of the first and second derivatives of the drawdown with respect to log time for the estimation of the flow parameters. Like commonly used analysis procedures, such as the type-curve approach developed by Walton (1962) and the inflection point method developed by Hantush (1956), the mathematical development of the DIP method is based on the assumption of homogeneity of the leaky aquifer layers. However, contrary to the two methods developed by Hantush and Walton, the new method does not need any fitting process. In homogeneous media, the two classic methods and the one proposed here provide exact results for transmissivity, storativity, and leakage factor when aquifer storage is neglected and the recharging aquifer is unperturbed. The real advantage of the DIP method comes when applying all methods independently to a test in a heterogeneous aquifer, where each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. Therefore, the methods are complementary and not competitive. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.  相似文献   

19.
In this article, alternate pumping is studied as a means used to reduce the salinity concentration in coastal aquifers, pumped using a system of wells. This approach has been applied to a hypothetical confined coastal aquifer. Flow has been modeled, using SEAWAT. Two strategies are proposed based on cooperative game theory, to promote alternate pumping. In both strategies an external player will compensate the users that will pump during an unpopular pumping period. In the first strategy it is supposed that this external player aims at protecting a critical well, e.g. a municipal well, reducing its maximum salinity concentration by pumping alternately. In the second strategy proposed, the target is to reduce the overall salinity of the water pumped by the wells. In applying the cooperative game theory, the Shapley value is used to distribute the benefits of cooperation between the players (well users), according to their marginal contribution. Overall, well users can reduce sea water intrusion by cooperatively changing their pumping time schedules. The game theoretical model developed is a useful tool to promote cooperation toward this direction. The methods applied in the hypothetical aquifer, can be tested in actual aquifers to reduce sea water intrusion.  相似文献   

20.
Characterization of a multilayer aquifer using open well dilution tests   总被引:1,自引:0,他引:1  
West LJ  Odling NE 《Ground water》2007,45(1):74-84
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号