首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
During early Carboniferous times a major sea-level rise led to the development of an extensive carbonate ramp over what is now South Wales. Differential subsidence and sea-level changes resulted in distinctive facies sequences in the ramp succession and a model is offered which recognizes three distinct geomorpho-tectonic settings; inner, mid- and outer ramp. The inner ramp zone occurs in the more landward part of the province and was an area undergoing little or no subsidence. The sequence is dominated by oolitic grainstones and peritidal limestones representing shoal and back shoal environments. The peritidal units are transgressive deposits consisting of stacked asymmetrical shallowing-up cycles. The sequence contains many subaerial breaks and tectonic uplift resulted in base-level changes and fluvial incision. The mid-ramp zone sequence is intermediate in thickness between the inner and outer ramp successions and consists mainly of bioclastic limestones deposited below fairweather wave base. Sedimentation periodically exceeded sea-level rise and subsidence, and regressive (progradational) oolitic sand bodies developed, the thickest of which are stacked units with up to four individual sand bodies. Storm processes were of major importance in this setting. The outer ramp zone is represented by a thick sequence of muddy bioclastic limestones deposited below storm wave base and major Waulsortian reef-mounds also developed. None of the shallowing phases seen in the other ramp zones can be detected in this sequence. Subsidence and eustatic sea-level rise seem to have been the major controls on deposition but the recognition of eustatic sea-level falls is difficult. The detailed facies model for ramp carbonates presented here may be applicable elsewhere in the geological record.  相似文献   

2.
循化-化隆盆地新生代沉积及盆地基底和周缘山系磷灰石裂变径迹年代学分析揭示了青藏高原东北缘晚白垩世以来经历过3期隆升剥露事件: (1)盆地基底及拉脊山和西秦岭北缘构造带磷灰石裂变径迹年龄分析普遍记录了晚白垩世-始新世中期相对快速的区域性的隆升剥露事件, 西秦岭北缘快速抬升的起始时间为84Ma, 受控于向北的逆冲抬升; 向北到循化-化隆盆地中部的拉目峡抬升的起始时间为69Ma; 更北的拉脊山一带快速抬升期主要为40~50Ma, 从而反映晚白垩世-始新世中期的快速抬升由南向北逐渐扩展.这一期构造隆升事件导致循化-化隆盆地和临夏盆地缺失了北部西宁-民和盆地古近纪所具有的西宁群沉积.隆升剥露结束于31Ma左右, 此时化隆-循化盆地向东与同时期的临夏盆地相连为一个统一的大型西秦岭山前盆地, 两者具有相同的构造、沉积演化史, 因此循化-化隆盆地他拉组底部地层年龄最老不会超过临夏盆地最老地层的古地磁年龄, 即29Ma.(2)渐新世晚期约26Ma拉脊山开始双向逆冲隆升, 并可能延续到中新世早期约21Ma, 隆升作用使循化-化隆盆地成为挟持于拉脊山逆冲带和西秦岭构造带之间的山前挤压型前陆盆地, 循化-化隆盆地开始大规模沉积巨厚的他拉组冲积扇相粗碎屑岩.(3)通过循化-化隆盆地咸水河组和临夏组的沉积相分析、古流方向和砾石成分分析, 揭示出拉脊山构造带在中新世8Ma左右发生的最大规模的双向逆冲隆升事件, 这次事件直接导致循化-化隆盆地由前陆挤压盆地转变为山间盆地, 形成现今青藏高原东北缘的盆山地貌基本格局.   相似文献   

3.
This paper reports a palaeomagnetic study of amphibolite and granulite facies basement rocks across a 60 km wide north-south traverse through the Nagssugtoqidian mobile belt in West Greenland, which incorporates the c. 2500 Ma Itivdleq shear belt, the c. 1800 Ma Ikertôq shear belt, and adjoining terrains. It also integrates the results with earlier investigations of the belt to produce a composite record of the magnetic field during uplift and cooling of the terrain through c. 600–500°C at c. 1750–1600 Ma. Progressive a.f. and thermal cleaning of samples from 81 sites identifies a range of magnetic components. Lowest blocking temperature remanences in Nagssugtoqidian (c. 1700 Ma) amphibolite facies rocks yield steep W to N positive components residing in magnetite. Granulite facies rocks formed at c. 1800 Ma generally have a dual record incorporating steep N to NW positive components unblocked by 580°C and shallow E-W directed components of dual polarity only unblocked close to the Curie point of haematite. A common feature of relict c. 2500 Ma amphibolite and granulite facies terrains is a progressive movement of sample directions back along a palaeofield migration path with treatment and is interpreted to represent the recovery of a discrete spectrum acquired during a.p.w. Areas with a distributed spectra through the critical range of blocking temperatures, altitude-controlled sections, and blocking temperature relationships all record consistent a.p.w. during the interval of uplift-related cooling. The collective data define a clockwise palaeofield migration path between D = 174, I = 32°, and D = 348, I = 66° referred to as the ‘A’ magnetisation. The equivalent palaeopoles define one limb of an a.p.w. loop conforming to other Laurentian poles assigned to the interval 1750–1650 Ma and widely represented as a post-Hudsonian overprinting or cooling remanence. Shallow E-W directions, designated ‘B’, predominate in late tectonic diorites and are therefore younger than 1700 Ma; they appear to represent a localised reheating event near the northern margin of the Ikertôq shear belt, possibly related to this magmatism, which produced the hemoilmenite phases. The equivalent palaeopoles are provisionally interpreted to represent part of the return path of the APW loop because they are coincident with other poles dated c. 1630 Ma. Collectively the palaeofield migration data from all studies define a thermal dome broadly coincident with the Ikertôq shear belt, but it is not possible to isolate the contribution of components of vertical movement along faults running through the belt to this regional effect.  相似文献   

4.
《Sedimentary Geology》1999,123(1-2):103-127
The uppermost Oligocene/Lower Miocene to Upper Miocene ramp carbonates from Montagna della Maiella (Italy) form a supersequence bounded by deeply incised truncation surfaces. This supersequence is subdivided into four sequences. Each sequence is composed of skeletal limestones in its lower part and marly limestones in its upper part. The lower parts of the sequences are foramol limestones, which suggest deposition in the warm-temperate climate zone. Changes in climate, oceanography and relative sea level combined to control sedimentation in the four sequences. In the lower parts of the two older sequences, the skeletal sands built dunes, suggesting high-energy conditions. The dominant skeletal grains in the oldest sequence are larger foraminifers and in the next sequence they are bryozoans; this change reflects cooling around the time of the Aquitanian/Burdigalian boundary. In the lower parts of the two younger sequences, of Middle and Late Miocene age, sediment sheets with red-algal–bryozoan oncoids suggest deposition under calmer conditions. Transgressive and highstand systems tracts are recognized in all sequences; a shelf margin systems tract may be exposed in the second oldest sequence. In contrast to the situation that exists when warm-water carbonates are deposited, sedimentation of the foramol limestones on this isolated ramp was unable to balance accommodation during sea-level rise; this led to hemipelagic sedimentation during sea-level highstands. Conglomerates resulted from reworking along flooding surfaces.  相似文献   

5.
泥盆系弗拉阶/法门阶之交事件沉积和海平面变化   总被引:10,自引:2,他引:10  
龚一鸣  李保华 《地球科学》2001,26(3):251-257
在华南板块南部被动大陆边缘和西伯利亚板块南部活动大陆边缘弗拉阶/法门阶之交识别出7种物理事件相: 细粒钙屑浊积岩相、钙质角砾岩相、软变形灰岩相、含微球粒的粒泥灰岩相、凝灰质砾岩相、黑色页岩相和火山喷溢相.它们在法门阶下Palmatolepis triangularis带底部和/或上Palmatolepis rhenana带底部具有广泛的分布, 可能是两次陨击事件记录, 是良好的高分辨率年代地层对比标志.弗拉期/法门期之交的海平面变化不具有同步性和一致性, 可分辨出2种型式(阶跃型和渐进型) 和5种状态(弗拉期最末期下降→法门期最初期上升、弗拉期最末期上升→法门期最初期下降、弗拉期最末期上升→法门期最初期上升、弗拉期最末期下降→法门期最初期下降、弗拉期最末期与法门期最初期海平面变化不明显).弗拉阶/法门阶之交生物的阶梯状绝灭可能与从上Palmatolepis rhenana带底部至Palmatolepis crepida带不均匀分布的6次陨击事件密切相关.   相似文献   

6.
Metre-scale siliciclastic–carbonate cycles are the basic depositional motif of the lower Miocene Guadagnolo Formation outcropping in the central Apennines. The mechanisms which formed the mixed-lithology cycles are still a matter of debate. The mixed siliciclastic–carbonate system discussed in this paper provides a new case study to illustrate the role of orbital forcing in controlling the facies evolution and cyclic stacking of small-scale sequences deposited on the outer sector of a ramp. Two sections are discussed that display mixed siliciclastics and carbonates arranged in upward-shallowing cycles. Each cycle shows an upward decrease in the terrigenous input and a parallel increase in benthic fauna. Time-series analyses indicate the cyclic carbonate-terrigenous pattern to be largely controlled by orbital forcing in the Milankovitch frequency band. Coupling of climate change and sea-level fluctuations in tune with orbital cycles are proposed as driving mechanisms.  相似文献   

7.
This work discusses and interprets the factors responsible for the Oligocene–Miocene drowning of the Central Apennine platform deposits, based on facies and stable‐isotope analyses of two representative stratigraphic sections. The Mediterranean carbonate platforms were affected during the Oligocene–Miocene boundary by a carbonate production crisis that was induced by global factors and amplified by regional events, such as volcanic activity. The positive δ13C shift observed in the studied sections corresponds to vertical facies changes reflecting the evolution from middle carbonate ramp to outer ramp‐hemipelagic depositional environments. This drowning event is recorded not only in the Apennine platforms, but also in other Mediterranean platforms such as in southern Apulia, Sicily and Malta, and outside the Mediterranean Basin. The ~24–23.5 Ma Mi‐1 glacial maximum may have had a significant influence on this drowning event because it was associated with high rates of accumulation of continent‐derived sediments. The increased continental weathering and runoff sustained high trophic conditions. These probably were a consequence of the Aquitanian–Burdigalian volcanic activity in the Central‐Western Mediterranean, that may have led to an increase in nutrient content in seawater and an increase in atmospheric and marine CO2 concentrations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The northern Tibetan Plateau has evolved a unique basin-range structure characterized by alternating elongated mountain ranges and basins over a history of multiple tectonic and fault activities. The Subei basin recorded evolution of this basin-range structure. In this study, detailed detrital apatite fission track (AFT) thermochronological studies in conjunction with previously documented data reveal provenance of the Subei basin, important information about the Indo-Eurasia collision, and two Miocene uplift and exhumation events of the northern Tibetan Plateau. Detrital AFT analyses combined with sedimentary evidences demonstrate that the Danghenanshan Mountains is the major provenance of the Subei basin. In addition, very old age peaks indicate that part sediments in the Subei basin are recycling sediments. Age peak populations of 70–44 Ma and 61–45 Ma from the lower and upper Baiyanghe formations record the tectono-thermal response to the Indo-Eurasia collision. Combined detrital AFT thermochronology, magnetostratigraphy and petrography results demonstrate the middle Miocene uplift and exhumation event initiated 14–12 Ma in the Subei basin, which may resulted from the Miocene east-west extension of the Tibetan Plateau. Another stronger uplift and exhumation event occurred in the late Miocene resulted from strengthened tectonic movement and climate. A much younger AFT grain age, breccia of diluvial facies and boulders of root fan subfacies record the late Miocene unroofing in the Danghenanshan Mountains.  相似文献   

9.
A multidisciplinary analysis of intraplate volcanic complexes interbedded with shallow and deeper marine sediments of a Late Miocene carbonate platform (Iblean Plateau, Sicily) has allowed a detailed paleo-environmental reconstruction. Our approach includes sedimentology, physical volcanology, stratigraphy, geochemistry/mineralogy, paleontology and 40Ar/39Ar dating. Four volcanic complexes are distinguished from each other. Two comprise an eastern shallow water platform (diatreme field and Carlentini complex) and two a western deeper water environment representing a seamount belt on the carbonate ramp (Valle Guffari seamount and Mineo complex). The late Miocene volcanism was not time-equivalent: episodic eruptions took place from the Late Tortonian (ca. 9.38 Ma at Mt. Carrubba) to Early Messinian (ca. 6.46 Ma at Valle Guffari). Explosive volcanism of the diatreme field may be related geodynamically to the period of periodic sea-level oscillations at the onset of the Messinian Salinity Crisis. Marine diatomites preserved in the crater areas of two diatremes are the only remnants of Early Messinian diatomites in the eastern Iblean Mountains.  相似文献   

10.
为了探讨南海碳酸盐台地的发育过程及控制因素, 采用有机分子化合物指标方法对其进行了研究.有机分子化合物指标BIT(branched isoprenoid tetraether)是沉积物中源自陆源的细菌膜脂支链甘油双烷基链甘油四醚(branched glycerol dialkyl glycerol tetraethers,简称bGDGTs)与主要来自海洋泉古菌中的类异戊二烯GDGTs(isoprenoid GDGTs,简称iGDGTs)的含量之比,在古环境研究中,用来区分沉积物有机质的来源、判断沉积环境.通过对西科1井的数据研究发现,西科1井BIT指数随深度呈现三段式规律性变化,从下到上呈现高-低-高的变化,反映了中中新世以来南海海平面变化及碳酸盐台地生长发育的过程:在中中新世晚期,受全球及区域海平面变化下降影响,西沙地区碳酸盐台地形成礁-滩交互的沉积地层,由于大气淡水的影响,造成BIT指数呈现高值;到晚中新世至上新世,全球及区域海平面出现持续上升,有利于西沙碳酸盐台地的生长发育,使该井沉积环境以礁内泻湖相为主,造成BIT指数呈现低值;在第四纪冰期,全球及区域海平面出现总体下降趋势,西沙碳酸盐台地又频繁暴露于地表,造成BIT指数又呈现高值.研究表明,西沙地区碳酸盐台地受区域相对海平面变化影响更大,说明南海海平面变化既受全球海平面变化的影响,也受南海区域构造沉降的控制.   相似文献   

11.
The Lower Miocene Euphrates and Jeribe formations are considered as the main targets of the Tertiary petroleum system in the western part of the Zagros Basin. The formations consist of carbonates with some evaporate intercalations of the Dhiban Formation. This study utilized data from a field investigation including newly described outcrop sections and newly discovered productive oil fields within the Kirkuk embayment zone of the Zagros fold and thrust belt such as Sarqala and Kurdamir wells. This work is the first to show a stratigraphic correlation and paleoenvironmental interpretation by investigating both well data and new outcrop data. Three depositional environments were identified, (1) an inner and outer ramp belts environment, (2) shoal environment, and (3) restricted lagoon environment. Within these 3 environments, 12 microfacies were identified, based on the distribution of fauna mainly benthonic foraminifera, rock textures, and sedimentary structures. The inferred shallow water depths and variable salinities in both the Euphrates Formation and Jeribe Formation carbonates are consistent with deposition on the inner ramp (restricted lagoon and shoal) environments. Those found in the Euphrates Formation constrained the depositional environment to the restricted lagoon and shoal environment, while the microfacies in the Jeribe Formation provided evidence for an inner ramp and middle to outer ramp belt environments. This study represents the first detailed research that focuses on the stratigraphic correlation and changes in carbonate facies with the main aim to provide a wider understanding of stratigraphy of these carbonate reservoirs throughout the northern part of Iraq.  相似文献   

12.
Carbonate platform drownings are frequent, often synchronous global occurrences, yet explanations for these world-wide events remain unsatisfactory. In the Central Apennines, Lower and Middle Miocene carbonate rocks deposited on a 'temperate' ramp in the Maiella platform margin record two episodes of platform drowning followed by hemipelagic sedimentation, dated as latest Oligocene–Aquitanian (26–23 M a) and as Burdigalian–Langhian (20–16 Ma). A high-resolution stratigraphy, based on strontium- isotopes, allows us to correlate key phases of platform evolution with events recorded in deep water ocean sediments. This paper suggests that high weathering rates and nutrient input in the Mediterranean during the early and middle Miocene –possibly linked to the uplift of the Tibetan region – set the preconditions for platform drowning, which were ultimately caused by rapid eustatic sea-level rises.  相似文献   

13.
《Sedimentary Geology》2001,139(3-4):171-203
Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20–50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga.The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale.Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals progradation of inner-ramp tidal flats over outer- and mid-ramp facies during shoaling. The maximum basinward progradation of peritidal facies coincides with a zone of slope failure that may have promoted the development of the stromatolitic reefs.The sea-level history of the Victor Bay Formation is represented by three hectometre-scale sequences. An initial flooding event resulted in deposition of the lower Victor Bay shale member. Upper-member carbonate cycles were then deposited during highstand. Mid-ramp slumping was followed by late-highstand reef development. The second sequence began with development of an inner-ramp lowstand unconformity and a thick mid-ramp lowstand wedge. A second transgression promoted a more modest phase of reef development at the mid-ramp and shallow-water deposition continued inboard. A third and final transgressive episode eventually led to flooding of the backstepping ramp.Overall consistent cycle thickness and absence of truncated cycles, as well as the high rate and amount of creation of accommodation space, suggest that the periodicity and amplitude of sea-level fluctuation were relatively uniform, and point to a eustatic rather than tectonic mechanism of relative sea-level change. High-amplitude, high-frequency eustatic sea-level change is characteristic of icehouse worlds in which short-term, large-scale sea-level fluctuations accompany rapidly changing ice volumes affected by Milankovitch orbital forcing. Packaging of cyclic Upper Victor Bay carbonates therefore supports the hypothesis of a late Mesoproterozoic glacial period, as proposed by previous workers.  相似文献   

14.
15.
The Taltheilei, Utsingi, McLean and Blanchet formations form a 175–390 m thick carbonate platform-to-basin succession in the lower part of the PaleoProterozoic Pethei Group, preserved in the eastern arm of Great Slave Lake. Carbonates accumulated along the south-east margin of the Slave Craton within a foredeep formed during the collision of the Slave and Churchill Cratons. The rocks include eight, predominantly microbial, carbonate facies that comprise five facies associations representing (1) shallow-water rimmed shelf, (2) shallow-water open shelf, (3) shallow-water ramp, (4) upper slope and deep ramp, and (5) lower slope and basin plain environments. Microbialite facies grew by organically mediated precipitation of spar and micritic cement and trapping and binding of lime mud. These wholly subtidal facies typically reflect progressive shallowing and changing geometry of the lower Pethei sea floor, from ramp, to open shelf, to shallow rimmed shelf, with associated slope and basin plain deposition. Repeated relative sea-level changes influenced platform growth. This resulted in five shallowing upward packages; each separated by an incipient drowning event of varying magnitude. Antecedent topography and the size of the preceding drowning event strongly influenced the initial growth of each interval. This repeated pattern is attributed to interaction between (a) the inherent tendency of microbial carbonates to aggrade vertically, (b) changing sedimentation rates and (c) readjustments of relative base level. The lower Pethei succession is one of few PaleoProterozoic examples of carbonate platform growth within a foreland basin. It has (1) a low gradient profile, (2) extensive slope and basin plain carbonate production and sedimentation, (3) no ooids, (4) minor terrigenous clastic sediments, and (4) a mobile, submergent shelf rim lacking substantial carbonate sand shoals.  相似文献   

16.
In this study, progradation and the subsequent retrogradation of a late Paleocene isolated carbonate platform (Galala Mountains, Eastern Desert, Egypt) is demonstrated by variations of distinct facies associations from the platform margin in the north to the hemipelagic basin in the south. A combination of a sea-level drop and tectonic uplift at around 59 Ma (calcareous nannofossil biozone NP5) favored the initiation of the carbonate platform. From this time onwards, the facies distribution along the platform–basin transect can be subdivided into five facies belts comprising nine different facies associations. Their internal relationships and specific depositional settings are strongly coupled with the Maastrichtian–Paleocene seafloor topography, which resulted from local tectonic movements. Patch reefs and reef debris were deposited at the platform margin and the horizontally bedded limestones on the upper slope. Slumps and debris flows were stored on the lower slope. In the subhorizontal toe-of-slope facies belt, mass-flow deposits pass into calciturbidites. Further southwards in the basin, only hemipelagic marls were deposited. Between 59 and 56.2 Ma (NP5–NP8), the overall carbonate platform system prograded in several pulses. Distinct changes in facies associations from 56.2 to 55.5 Ma (NP9) resulted from rotational block movements. They led to increased subsidence at the platform margin and a coeval uplift in the toe-of-slope areas. This resulted in the retrogradation of the carbonate platform. Furthermore the patch-reef and reef-debris facies associations were substituted by the larger foraminifera shoal association. The retrogradation is also documented by a significant decrease in slump and debris-flow deposits on the slope and calciturbidites at the toe of slope.  相似文献   

17.
The easternmost domain of the Borborema Province, northeastern Brazil, presents widespread, extensional-related high-temperature metamorphism during the Brasiliano (=Pan-African) orogeny. This event reached the upper amphibolite to granulite facies and provoked generalized migmatization of Proterozoic metapelitic rocks of the Seridó Group and tonalitic to granodioritic orthogneisses of the Archean to Paleoproterozoic basement. We report new geochronological data based on electron microprobe dating of monazite from metapelitic migmatite and leuconorite within the high-T shear zones that make up the eastern continuation of the huge E–W Patos shear belt. These data were also constrained by using the Sm–Nd isotopic systematic on garnet from a syntectonic alkaline granite and two garnet-bearing leucosomes. The results suggest an age of about 578 to 574 Ma for the peak of the widespread high-T metamorphism. This event is best recorded by Sm–Nd garnet-whole rock ages. The U–Th–Pb isotopes on monazite of the metapelitic migmatite show a younger thermal event at 553 ± 10 Ma. When compared to the Sm–Nd garnet-whole rock ages, the U–Th–Pb electron probe monazite ages seem to record an event of slightly lower temperatures after the peak of the high-T metamorphism. This may reflect the difference in the isotopic behavior of the geochronological methods employed. Otherwise, the U–Th–Pb ages on monazites could indicate an event not yet very well defined. In anyway, this paper reveals the partial or even complete re-opening and resetting of the U–Th–Pb isotopic system produced by the action of low-T Ca-rich fluid.  相似文献   

18.
Six large Late Miocene to Quaternary calderas, > 10 km in diameter, cluster together with several medium to small calderas and stratovolcanoes in a 60 × 30 km area of the Aizu volcanic field, southern NE Japan arc. These caldera volcanoes were built on a WNW–ESE trending highland coincident with a local uplifted swell since Late Miocene. The flare-up of felsic volcanism occurred synchronously along the NE Japan arc. Pyroclastic flow sheets from the calderas spread over the surrounding intra-arc basins and are interstratified with various sediments. Geochronological data indicates that the large-caldera eruptions have occurred six times since 8 Ma, at intervals of 1 to 2 million years. Late Miocene to Early Pliocene extra-caldera successions in the basin consist of nine sedimentary facies associations: (1) primary pyroclastics, (2) lahars, (3) gravelly fluvial channels, (4) sandy fluvial channels, (5) floodplains, (6) tidal flats, (7) delta fronts, (8) pro-delta slopes, and (9) pro-delta turbidites. The distribution of facies associations show westward prograding of volcaniclastic aprons, made up of braid delta, braidplain, pyroclastic flow sheet, and incised braided river deposits. The extra-caldera successions record: 1) an increase in felsic volcanism with an associated high rate of volcaniclastic sediment supply at about 10 Ma, prior to catastrophic caldera-forming eruptions; and 2) progradation of volcaniclastic aprons toward the back-arc side in response to the succeeding caldera-forming eruptions and sea-level changes, until about 3 Ma.  相似文献   

19.
Progradational shoreface tongues preserve a near-complete depositional record of relative sea-level highstands, falls and lowstands. Two distinct styles of progradational shoreface tongue are examined in an extensive outcrop and subsurface dataset from Late Cretaceous strata of the Book Cliffs area, Utah, representing (i) highstand through attached lowstand progradation and (ii) highstand through detached lowstand progradation. Using this dataset, key geometrical attributes of the shoreface tongues and their internal facies architecture are identified and quantified that enable the reconstruction of relative sea-level fall history. For example, attached, wave-dominated lowstand shoreface deposits record a slow (0.2– 0.3 mm yr–1), low-magnitude (> 14 m) relative sea-level fall punctuated by minor rises. Detached, weakly wave-influenced lowstand shoreface deposits record a more rapid (0.4–0.5 mm yr–1), high-magnitude (> 45 m) relative sea-level fall synchronous with a marked change in sediment delivery and depositional process regime at the shoreline.  相似文献   

20.
The Umbria-Marche foreland fold-and-thrust belt in the northern Apennines of Italy provides excellent evidence to test the hypothesis of synsedimentary-structural control on thrust ramp development. This orogenic belt consists of platform and pelagic carbonates, Late Triassic to Miocene in age, whose deposition was controlled by significant synsedimentary extension. Normal faulting, mainly active from Jurassic through Late Cretaceous-Paleogene time, resulted in significant lateral thickness variability within the related stratigraphic sequences. By Late Miocene time the sedimentary cover was detached from the underlying basement and was deformed by east-verging folds and west-dipping thrusts. Two restored balanced cross sections through the southernmost part of the belt show a coincidence between the early synsedimentary normal faults and the late thrust fault ramps. These evidences suggest that synsedimentary tectonic structures, such as faults and the related lithological lateral changes, can be regarded as mechanically important controlling factors in the process of thrust ramp development during positive tectonic inversion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号