首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
This study deals with the external type of topographic–isostatic potential and gravity anomaly and its vertical derivatives, derived from the Airy/Heiskanen model for isostatic compensation. From the first and the second radial derivatives of the gravity anomaly the effect on the geoid is estimated for the downward continuation of gravity to sea level in the application of Stokes' formula. The major and regional effect is shown to be of order H 3 of the topography, and it is estimated to be negligible at sea level and modest for most mountains, but of the order of several metres for the highest and most extended mountain belts. Another, global, effect is of order H but much less significant Received: 3 October 1997 / Accepted: 30 June 1998  相似文献   

2.
Ionospheric delay is a dominant error source in Global Navigation Satellite System (GNSS). Single-frequency GNSS applications require ionospheric correction of signal delay caused by the charged particles in the earth’s ionosphere. The Chinese Beidou system is developing its own ionospheric model for single-frequency users. The number of single-frequency GNSS users and applications is expected to grow fast in the next years in China. Thus, developing an appropriate ionospheric model is crucially important for the Chinese Beidou system and worldwide single-frequency Beidou users. We study the performance of five globally accessible ionospheric models Global Ionospheric Map (GIM), International Reference Ionosphere (IRI), Parameterized Ionospheric Model (PIM), Klobuchar and NeQuick in low- and mid-latitude regions of China under mid-solar activity condition. Generally, all ionospheric models can reproduce the trend of diurnal ionosphere variations. It is found that all the models have better performances in mid-latitude than in low-latitude regions. When all the models are compared to the observed total electron content (TEC) data derived from GIM model, the IRI model (2012 version) has the best agreement with GIM model and the NeQuick has the poorest agreement. The RMS errors of the IRI model using the GIM TEC as reference truth are about 3.0–10.0 TECU in low-latitude regions and 3.0–8.0 TECU in mid-latitude regions, as observed during a period of 1 year with medium level of solar activity. When all the ionospheric models are ingested into single-frequency precise point positioning (PPP) to correct the ionospheric delays in GPS observations, the PIM model performs the best in both low and mid-latitudes in China. In mid-latitude, the daily single-frequency PPP accuracy using PIM model is ~10 cm in horizontal and ~20 cm in up direction. At low-latitude regions, the PPP error using PIM model is 10–20 cm in north, 30–40 cm in east and ~60 cm in up component. The single-frequency PPP solutions indicate that NeQuick model has the lowest accuracy among all the models in both low- and mid-latitude regions of China. This study suggests that the PIM model may be considered for single-frequency GNSS users in China to achieve a good positioning accuracy in both low- and mid-latitude regions.  相似文献   

3.
Urbanization in China has been experiencing a remarkable dynamism in the past 40 years. The most evident implication of urbanization is the physical growth of cities. We analyze urban land growth rates and changes in spatial urban forms from the end of the 1980s to 2010 based on the authoritative National Land Use/Cover Database of China. We present new spatial measures that describe ‘urban land growth types’ and ‘fluctuations in urban land growth’ within the monitoring time span with a temporal interval of five-year steps. We evaluate the correlations between urban land growth rates and socioeconomic data. Results show that (1) distinct characteristics exist on the spatiotemporal evolutions of urban land growth rates in terms of area and perimeter, e.g. coastal areas exhibit the most dramatic growth rates; (2) the spatial distribution characteristics of ‘urban land growth types’ and ‘fluctuations in urban land growth’ follow similar spatial patterns across China, e.g. significant differences exist between the eastern region and other regions; and (3) a moderate correlation exists between urban area growth rate and urban population growth rate at an R² of 0.37. By contrast, we determine no significant correlation between urban area growth rate and tertiary industry value growth rate.  相似文献   

4.
At the beginning of the new millennium, after a severe drought and destructive floods along the Yangtze River, the Chinese government implemented two large ecological rehabilitation and reforestation projects: the Natural Forest Protection Programme and the Sloping Land Conversion Programme. Using Landsat data from a decade before, during and after the inception of these programmes, we analyze their impacts along with other policies on land use, land cover change (LULCC) in southwest China. Our goal is to quantify the predominant land cover changes in four borderland counties, home to tens of thousands of ethnic minority individuals. We do this in three time stages (1990, 2000 and 2010). We use support vector machines as well as a transition matrix to monitor the land cover changes. The land cover classifications resulted in an overall accuracy and Kappa coefficient for forested area and cropland of respectively 91% (2% confidence interval) and 0.87. Our results suggest that the total forested area observed increased 3% over this 20-year period, while cropland decreased slightly (0.1%). However, these changes varied over specific time periods: forested area decreased between 1990 and 2000 and then increased between 2000 and 2010. In contrast, cropland increased and then decreased. These results suggest the important impacts of reforestation programmes that have accelerated a land cover transition in this region. We also found large changes in LULC occurring around fast growing urban areas, with changes in these peri-urban zones occurring faster to the east than west. This suggests that differences in socioeconomic conditions and specific local and regional policies have influenced the rates of forest, cropland and urban net changes, disturbances and net transitions. While it appears that a combination of economic growth and forest protection in this region over the past 20 years has been fairly successful, threats like drought, other extreme weather events and land degradation remain.  相似文献   

5.
The objective of the present study, developed in a mountainous region in Brazil where many landslides occur, is to present a method for detecting landslide scars that couples image processing techniques with spatial analysis tools. An IKONOS image was initially segmented, and then classified through a Batthacharrya classifier, with an acceptance limit of 99%, resulting in 216 polygons identified with a spectral response similar to landslide scars. After making use of some spatial analysis tools that took into account a susceptibility map, a map of local drainage channels and highways, and the maximum expected size of scars in the study area, some features misinterpreted as scars were excluded. The 43 resulting features were then compared with visually interpreted landslide scars and field observations. The proposed method can be reproduced and enhanced by adding filtering criteria and was able to find new scars on the image, with a final error rate of 2.3%.  相似文献   

6.
We present new insights on the time-averaged surface velocities, convergence and extension rates along arc-normal transects in Kumaon, Garhwal and Kashmir–Himachal regions in the Indian Himalaya from 13 years of high-precision Global Positioning System (GPS) time series (1995–2008) derived from GPS data at 14 GPS permanent and 42 campaign stations between $29.5{-}35^{\circ }\hbox {N}$ and $76{-}81^{\circ }\hbox {E}$ . The GPS surface horizontal velocities vary significantly from the Higher to Lesser Himalaya and are of the order of 30 to 48 mm/year NE in ITRF 2005 reference frame, and 17 to 2 mm/year SW in an India fixed reference frame indicating that this region is accommodating less than 2 cm/year of the India–Eurasia plate motion ( ${\sim }4~\hbox {cm/year}$ ). The total arc-normal shortening varies between ${\sim }10{-}14~\hbox {mm/year}$ along the different transects of the northwest Himalayan wedge, between the Indo-Tsangpo suture to the north and the Indo-Gangetic foreland to the south indicating high strain accumulation in the Himalayan wedge. This convergence is being accommodated differentially along the arc-normal transects; ${\sim } 5{-}10~\hbox {mm/year}$ in Lesser Himalaya and 3–4 mm/year in Higher Himalaya south of South Tibetan Detachment. Most of the convergence in the Lesser Himalaya of Garhwal and Kumaon is being accommodated just south of the Main Central Thrust fault trace, indicating high strain accumulation in this region which is also consistent with the high seismic activity in this region. In addition, for the first time an arc-normal extension of ${\sim }6~\hbox {mm/year}$ has also been observed in the Tethyan Himalaya of Kumaon. Inverse modeling of GPS-derived surface deformation rates in Garhwal and Kumaon Himalaya using a single dislocation indicate that the Main Himalayan Thrust is locked from the surface to a depth of ${\sim }15{-}20~\hbox {km}$ over a width of 110 km with associated slip rate of ${\sim }16{-}18~\hbox {mm/year}$ . These results indicate that the arc-normal rates in the Northwest Himalaya have a complex deformation pattern involving both convergence and extension, and rigorous seismo-tectonic models in the Himalaya are necessary to account for this pattern. In addition, the results also gave an estimate of co-seismic and post-seismic motion associated with the 1999 Chamoli earthquake, which is modeled to derive the slip and geometry of the rupture plane.  相似文献   

7.
This research focuses on the recent variations in the annual snowline and the total glaciated area of the Nevado Coropuna in the Cordillera Ampato, Peru. Maximum snowline altitude towards the end of dry season is taken as a representative of the equilibrium line altitude of the year, which is an indirect measurement of the annual mass balance. We used Landsat and IRS LISS3 images during the last 30 years due to its better temporal coverage of the study site. It is found that there was a decrease of 26.92% of the glaciated area during 1986–2014. We calculated the anomalies in precipitation and temperature in this region and also tried to correlate the changes in glacier parameters with the combined influence of El Niño – Southern Oscillation (ENSO) and pacific decadal oscillation (PDO). It is concluded that the snowline of Nevado Coropuna has been fluctuated during ENSO, and maximum fluctuations were observed when ENSO and PDO were in phase.  相似文献   

8.
We studied changes in area and species composition of six indigenous forest fragments in the Taita Hills, Kenya using 1955 and 1995 aerial photography with 2004 airborne digital camera mosaics. The study area is part of Eastern Arc Mountains, a global biodiversity hot spot that boasts an outstanding diversity of flora and fauna and a high level of endemism. While a total of 260 ha (50%) of indigenous tropical cloud forest was lost to agriculture and bushland between 1955 and 2004, large-scale planting of exotic pines, eucalyptus, grevillea, black wattle and cypress on barren land during the same period resulted in a balanced total forest area. In the Taita Hills, like in other Afrotropical forests, indigenous forest loss may adversely affect ecosystem services.  相似文献   

9.
The southern Yucatán (SY) has been recognized as a hotspot of biodiversity with great risk of deforestation. Land change analysis, based on classified Landsat TM and ETM?+?satellite imagery (1990, 2000 and 2006), was used to estimate the annual deforestation rates of 141 land management units of the SY, and spatial patterns of forest fragmentation around and within the Calakmul Biosphere Reserve (CBR), which comprises approximately one-third of the region. Results indicate a decrease in annual deforestation rates over 1990–2006, from 0.15% year?1 to 0.06% year?1, but with significant sub-regional variations in the quantity and rate of forest loss. Despite a decline in deforestation during this period, there was considerable fragmentation both inside and outside the CBR. While population pressures and the expansion of pasture have caused deforestation across the region, agricultural intensification, diversified income strategies and reserve conservation may have contributed to reduced forest loss during the study period.  相似文献   

10.
11.
Seasonal snow melt in the Wind River Range, Wyoming, has been ending earlier over the last several decades leaving the region to rely more on supplemental melt water from mountain glaciers. This leads to the necessity of understanding recent glacial changes. This study uses elevation data from 1966, 2006 and 2011 to calculate surface elevation and volume changes that have occurred on Continental Glacier. Results indicate a mean volume change of ?0.034 ± 0.02 km3 and surface elevation change of ?0.36 ± 0.19 m y?1 between 1966 and 2006. Detailed spatial analysis shows that the glacier is divided into two sections which are thinning at different rates (lower section: ?0.06±0.19 m y?1; upper section: ?0.51 ± 0.19 m y?1). The upper section has experienced 97% of the thinning (or 742.5 × 103 m3 of melt water equivalent per year) and increased its rate since 2006 by 27.5%.  相似文献   

12.
On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar–China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW–SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar–China earthquake is one of the largest recorded earthquakes that has occurred around the “bookshelf faulting” system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.  相似文献   

13.
Comment on ‘Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA’ by S.C. Benker, R.P. Langford and T.L. Pavlis (Geocarto Int. 26:291–303, doi: 10.1080/10106049.2011.568125).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号