首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sakurai's object (V4334 Sgr) is a planetary nebula nucleus which is undergoing its final helium shell flash. This is the first of these rare and important events to be observable with non-optical instruments. We report the first radio detection, using a short (2-h) observation with the Very Large Array (VLA) at 4.86 GHz. The radio emission structure is coincident with the 34-arcsec diameter planetary nebula seen in optical emission lines. We find a statistical distance ∼ 3.8 ± 0.6 kpc, with a range of 1.9 <  D  < 5.3 kpc, depending on the planetary nebula (PN) mass. While we have no direct evidence for a new (post-flash) stellar wind, we estimate an upper limit to the mass-loss rate due to any such wind of 1.7 × 10−7 M⊙ yr−1. The number of emitting knots in the radio-visible nebula indicates an electron density of ∼ 2 × 108 m−3 in those knots, and a total emitting ionized mass of ∼ 0.15 M⊙, at an assumed distance of 3.8 kpc. The radio flux density indicates an Hβ flux of ∼ 6 × 10−16 W m−2, suggesting an extinction E ( B  −  V ) ∼ 1.15, comparable with reddening estimates in the direction of V4334 Sgr.  相似文献   

2.
Extensive photometric and spectroscopic observations of SN 1994aj until 540 d after maximum light have been obtained. The photometry around maximum suggests that the SN belongs to the Type II Linear class, with a peak absolute magnitude of M V∼−17.8 (assuming H 0=75 km s−1 Mpc−1). The spectra of SN 1994aj were unusual, with the presence of a narrow line with a P Cygni profile on top of the broad Balmer line emission. This narrow feature is attributed to the presence of a dense superwind surrounding the SN. At 100–120 d after maximum light the SN ejecta start to interact with this circumstellar material. The SN luminosity decline rates slowed down [γ R =0.46 mag (100 d)−1], becoming less steep than the average late luminosity decline of normal SN II [∼1 mag (100 d)−1]. This dense ( ˙M / u W∼1015 g cm−1) wind was confined to a short distance from the progenitor ( R out=∼5×1016 cm), and results from a very strong mass-loss episode ( ˙M =10−3 M⊙ yr−1), which terminated shortly before explosion (∼5–10 yr).  相似文献   

3.
We present the results of a spectroscopic multisite campaign for the β Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with eight different telescopes in a time span of 11 months. In addition, we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the slowly pulsating B-stars (SPB)-like g -mode with frequency 0.3428 d−1 reported before is detected in our spectroscopy. We identify the four main modes as  (ℓ1, m 1) = (1, 1), (ℓ2, m 2) = (0, 0), (ℓ3, m 3) = (1, 0)  and  (ℓ4, m 4) = (2, 1)  for   f 1= 5.178 964 d−1, f 2= 5.334 224 d−1, f 3= 5.066 316 d−1  and   f 4= 5.490 133 d−1  , respectively. Our seismic modelling shows that f 2 is likely the radial first overtone and that the core overshooting parameter  αov  is lower than 0.4 local pressure scale heights.  相似文献   

4.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

5.
We present HST /WFPC2 observations of UGC 4483, an irregular galaxy in the M81/NGC 2403 complex. Stellar photometry was carried out with HSTphot, and is complete to V ≃26.0 and I ≃24.7. We measure the red giant branch tip at I =23.56±0.10, and calculate a distance modulus of μ 0=27.53±0.12 (corresponding to a distance of 3.2±0.2 Mpc), placing UGC 4483 within the NGC 2403 subgroup. We were able to measure properties of a previously known young star cluster in UGC 4483, finding integrated magnitudes of V =18.66±0.21 and I =18.54±0.10 for the stellar contribution (integrated light minus H α and [O  iii ] contribution), corresponding to an age of ∼10–15 Myr and an initial mass of ∼104 M. This is consistent with the properties of the cluster's brightest stars, which were resolved in the data for the first time. Finally, a numerical analysis of the galaxy's stellar content yields a roughly constant star formation rate of 1.3×10−3 M yr−1 and mean metallicity of [Fe/H]=−1.3 dex from 15 Gyr ago to the present.  相似文献   

6.
High-resolution spectroscopic observations around the Hα line and BVRI photometry of the eclipsing short-period RS CVn star UV Leo are presented. The simultaneous light-curve solution and radial velocity-curve solution led to the following values of the global parameters of the binary: temperatures   T 1= 6000 ± 100 K  and   T 2= 5970 ± 20 K  ; masses   M 1= 0.976 ± 0.067 M  and   M 2= 0.931 ± 0.052 M  ; separation   a = 3.716 ± 0.048 R  ; orbital inclination     ; radii   R 1= 1.115 ± 0.052 R  and   R 2= 1.078 ± 0.051 R  ; equatorial velocities   V 1= 98.8 ± 2.3 km s−1  and   V 2= 89.6 ± 2.7 km s−1  . These results lead to the conclusion that the two components of UV Leo are slightly oversized for their masses and lie within the main-sequence band on the mass–radius diagram, close to the isochrone 9 × 1010 yr.  相似文献   

7.
We present near-infrared polarimetric images of the dusty circumstellar envelope (CSE) of IRAS 19306+1407, acquired at the United Kingdom Infrared Telescope (UKIRT) using the UKIRT 1–5 μm Imager Spectrometer (UIST) in conjunction with the half-waveplate module IRPOL2. We present additional 450- and 850-μm photometry data obtained with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), as well as archived Hubble Space Telescope ( HST ) F606W - and F814W -filter images. The CSE structure in polarized flux at J and K bands shows an elongation north of north-east and south of south-west with two bright scattering shoulders north-west and south-east. These features are not perpendicular to each other and could signify a recent 'twist' in the outflow axis. We model the CSE using an axisymmetric light scattering ( als ) code to investigate the polarization produced by the CSE, and an axisymmetric radiation transport ( dart ) code to fit the spectral energy distribution. A good fit was achieved with the als and dart models using silicate grains, 0.1–0.4 μm with a power-law size distribution of a −3.5, and an axisymmetric shell geometry with an equator-to-pole ratio of 7:1. The spectral type of the central star is determined to be B1 i supporting previous suggestions that the object is an early planetary nebula. We have constrained the CSE and interstellar extinction as 2.0 and 4.2 mag, respectively, and have estimated a distance of 2.7 kpc. At this distance, the stellar luminosity is ∼4500 L and the mass of the CSE is ∼0.2 M. We also determine that the mass loss lasted for ∼5300 yr with a mass-loss rate of ∼3.4 × 10−5 M yr−1.  相似文献   

8.
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary-to-primary stellar mass ratio should be  0.003 ≲ ( M 2/ M 1) ≲ 0.15  . A more massive secondary star will keep the primary stellar envelope in synchronized rotation with the orbital motion until merger occurs. This implies a very small relative velocity between the secondary star and the primary stellar envelope at the moment of merger, and therefore very weak shock waves, and low-flash luminosity. A too low-mass secondary will release small amount of energy, and will expel small amount of mass, which is unable to form an inflated envelope. It can, however, produce a quite luminous but short flash when colliding with a low-mass main-sequence star.
Violent and luminous mergers, which we term mergebursts, can be observed as V838 Monocerotis-type events, where a star undergoes a fast brightening lasting days to months, with a peak luminosity of up to  ∼106 L  followed by a slow decline at very low effective temperatures.  相似文献   

9.
We report further UKIRT spectroscopic observations of Sakurai's object (V4334 Sgr) made in 1999 April/May in the 1–4.75 μm range, and find that the emission is dominated by amorphous carbon at T d~600 K. The estimated maximum grain size is 0.6 μm, and the mass lower limit is 1.7±0.2×10−8 M to 8.9±0.6×10−7 M for distances of 1.1–8 kpc. For 3.8 kpc the mass is 2.0±0.1×10−7 M.
We also report strong He  i emission at 1.083 μm, in contrast to the strong absorption in this line in 1998. We conclude that the excitation is collisional, and is probably caused by a wind, consistent with the P Cygni profile observed by Eyres et al. in 1998.  相似文献   

10.
Discs in the 6 Myr old cluster η Chamaeleontis were searched for emission from hot H2. Around the M3 star ECHA J0843.3−7905, we detect circumstellar gas orbiting at ∼2 au. If the gas is ultraviolet excited, the ro-vibrational line traces a hot gas layer supported by a disc of mass  ∼0.03 M  , similar to the minimum mass solar nebula. Such a gas reservoir at 6 Myr would promote the formation and the inwards migration of gas giant planets.  相似文献   

11.
We present combined optical/near-infrared photometry ( BVIK ) for six open clusters – M35, M37, NGC 1817, NGC 2477, NGC 2420 and M67. The open clusters span an age range from 150 Myr to 4 Gyr and have metal abundances from  [Fe/H]=−0.27  to +0.09 dex. We have utilized these data to test the robustness of theoretical main sequences constructed by several groups as denoted by the following designations – Padova, Baraffe, Y2, Geneva and Siess. The comparisons of the models with the observations have been performed in the  [ MV , ( B − V )0], [ MV , ( V − I )0]  and  [ MV , ( V − K )0]  colour–magnitude diagrams as well as the distance-independent  [( V − K )0, ( B − V )0]  and  [( V − K )0, ( V − I )0]  two-colour diagrams. We conclude that none of the theoretical models reproduces the observational data in a consistent manner over the magnitude and colour range of the unevolved main sequence. In particular, there are significant zero-point and shape differences between the models and the observations. We speculate that the crux of the problem lies in the precise mismatch between theoretical and observational colour–temperature relations. These results underscore the importance of pursuing the study of stellar structure and stellar modelling with even greater intensity.  相似文献   

12.
We present CCD BVI photometry for the southern open cluster NGC 2489 and its surrounding field. The sample consists of 2182 stars measured in an area of 13.6 × 13.6 arcmin2, extending down to   V ∼ 21.5  . These data are supplemented with CORAVEL radial-velocity observations for seven red giant candidates. A cluster angular radius of 6.7 ± 0.6 arcmin, equivalent to 3.5 ± 0.3 pc, is estimated from star counts carried out inside and outside the cluster region. The comparison of the cluster colour–magnitude diagrams with isochrones of the Padova group yields   E ( B − V ) = 0.30 ± 0.05, E ( V − I ) = 0.40 ± 0.05  and   V − M V = 12.20 ± 0.25  for log   t = 8.70 ( t = 500+130−100 Myr)  and   Z = 0.019  . NGC 2489 is then located at 1.8 ± 0.3 kpc from the Sun and 25 pc below the Galactic plane. The analysis of the kinematical data allowed us to confirm cluster membership for six red giants, one of them being a spectroscopic binary. A mean radial velocity of 38.13 ± 0.33 km s−1 was derived for the cluster red giants. The properties of a sample of open clusters aligned along the line of sight of NGC 2489 are examined.  相似文献   

13.
We present and discuss optical, near-infrared and H  i measurements of the galaxy Markarian 1460 at a distance of 19 Mpc in the Ursa Major Cluster. This low-luminosity ( M B =−14) galaxy is unusual because (i) it is blue ( B − R =0.8) and has the spectrum of an H  ii galaxy, (ii) it has a light profile that is smooth and well fitted by an r 1/4 and not an exponential function at all radii larger than the seeing, and (iii) it has an observed central brightness of about μ B =20 mag arcsec−2 , intermediate between those of elliptical galaxies (on the bright μ B side) and normal low-luminosity dwarf irregular (on the low μ B side) galaxies. No other known galaxy exhibits all these properties in conjunction. On morphological grounds this galaxy looks like a normal distant luminous elliptical galaxy, since the Fundamental Plane tells us that higher luminosity normal elliptical galaxies tend to have lower surface-brightnesses. Markarian 1460 has 2×107 M of H  i and a ratio M (H  i )/ L B of 0.2, which is low compared to the typical values for star-forming dwarf galaxies. From the high surface-brightness and r 1/4 profile, we infer that the baryonic component of Markarian 1460 has become self-gravitating through dissipative processes. From the colours, radio continuum, H  i and optical emission line properties, and yet smooth texture, we infer that Markarian 1460 has had significant star formation as recently as ∼1 Gyr ago but not today.  相似文献   

14.
A multifrequency analysis of the SX Phoenicis star BL Camelopardalis is presented on the basis of new high-speed photometry, along with fitting a total of 136 maxima. BL Cam is a multiple periodic pulsator. We find f 0=25.5768, f 1=25.2982, f 2=25.8622, f 3=31.5912, f 4=25.1065, f 5=25.5147 and f 6=25.6188 cycle d−1 together with the harmonics 51.1513 and 76.7268 cycle d−1 and combination frequencies f 0+ f 1, f 0+ f 2 and f 0+ f 3. The new frequency solution represents the light curves of BL Cam quite well. The observed minus calculated (O-C) analysis indicates that the fundamental frequency is in good agreement with the results of Fourier analysis.  相似文献   

15.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

16.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

17.
We present the results of a three-year Johnson V and Strömgren uvby H β photometric study of the δ Scuti star BR Cancri (BR Cnc). Our data sets consist of 1293 discrete differential magnitudes in Johnson V and yellow y filters, 883 in Strömgren v and 239 in ub filters. The Fourier analysis of the data suggests four pulsation frequencies for the variable: f 1=24.978, f 2=11.358, f 3=11.808 and f 4=27.914 cycle d−1. During the three observing years, the main frequency f 1 kept its V ( y ) amplitude constant at about 6 mmag but its v amplitude seems to be changing. Amplitude variations for all the three other frequencies are also claimed. The pulsation modes of the frequencies are discussed based on the colour data. Using uvbyβ data and calibrations in the literature, we derive the physical parameters for BR Cnc.  相似文献   

18.
The sdB star PG 1336−018 is found to be a very short-period eclipsing binary system, remarkably similar to the previously unique system HW Vir. In addition, and unlike HW Vir, the sdB star in the PG 1336 system shows rapid oscillations of the type found in the recently discovered sdB pulsators, or EC 14026 stars. The orbital period, 0.101 0174 d, is one of the shortest known for a detached binary. Analysis of photoelectric and CCD photometry reveals pulsation periods near 184 and 141 s, with semi-amplitudes of ∼0.01 and ∼0.005 mag respectively. Both oscillations might have variable amplitude, and it is probable that other frequencies are present with amplitudes ∼0.003 mag or less. The 184- and 141-s pulsations are in the range of periods predicted by models for hot horizontal-branch stars. Analysis of medium-dispersion spectrograms yields T eff=33 000±1000 K and log g =5.7±0.1 for the sdB primary star, a radial velocity semi-amplitude K 1=78±3 km s−1 and a system velocity γ=6±2 km s−1. Spectrograms from the IUE Final Archive give T eff=33 000±3000 K and E ( B − V )=0.05 for log g =6.0 models. The derived angular radius leads to a distance of 710±50 pc for the system, and an absolute magnitude for the sdB star of +4.1±0.2. A preliminary analysis of U , V and R light curves indicates the orbital inclination to be near 81° and the relative radii to be r 1=0.19 and r 2=0.205. Assuming the mass of the sdB primary to be 0.5 M⊙ leads to a mass ratio q =0.3 for the system, and indicates that the secondary is a late-type dwarf of type ∼M5. As with HW Vir, it is necessary to invoke small limb-darkening coefficients and high albedos for the secondary star to obtain reasonable fits to the observed light curves.  相似文献   

19.
We report the outcome of the deep optical/infrared photometric survey of the central region (33 × 33 arcmin2 or 0.9 pc2) of the η Chamaeleontis (η Cha) pre-main sequence star cluster. The completeness limits of the photometry are I = 19.1, J = 18.2 and H = 17.6, faint enough to reveal low-mass members down to the brown dwarf and planet boundary of ≈13 MJup. We found no such low-mass members in this region. Our result combined with a previous shallower ( I = 17) but larger area survey indicates that low-mass objects  (0.013 < M /M < 0.075)  were either not created in the η Cha cluster or lost due to the early dynamical history of the cluster and ejected to outside the surveyed areas.  相似文献   

20.
We present a ROSAT and ASCA study of the Einstein source X-9 and its relation to a shock-heated shell-like optical nebula in a tidal arm of the M81 group of interacting galaxies. Our ASCA observation of the source shows a flat and featureless X-ray spectrum well described by a multicolour disc blackbody model. The source most likely represents an optically thick accretion disc around an intermediate-mass black hole  ( M ∼102 M)  in its high/soft state, similar to other variable ultraluminous X-ray sources observed in nearby disc galaxies. Using constraints derived from both the innermost stable orbit around a black hole and the Eddington luminosity, we find that the black hole is fast-rotating and that its mass is between ∼80 M–1.5×102 M. The inferred bolometric luminosity of the accretion disc is ∼(1.1×1040 erg s−1)/(cos  i ). Furthermore, we find that the optical nebula is very energetic and may contain large amounts of hot gas, accounting for a soft X-ray component as indicated by archival ROSAT PSPC data. The nebula is apparently associated with X-9; the latter may be powering the former and/or they could be formed in the same event (e.g. a hypernova). Such a connection, if confirmed, could have strong implications for understanding both the birth of intermediate-mass black holes and the formation of energetic interstellar structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号