首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2007年宁洱6.4级地震监测与研究   总被引:1,自引:0,他引:1  
利用宁洱地震现场流动台网监测资料进行精确定位,结合云南区域测震台网地震波资料,给出了宁洱地震主、余震的震源参数,分析讨论了宁洱地震的震源过程。研究显示,宁洱6.4级地震发震构造为NW向断裂,主破裂走向约N50°W,倾向WS,倾角约80°,断层性质为走滑型。断层破裂长度约为30km,宽度约5km,破裂面深2~12km,断层走向与宏观等震线长轴方向基本一致。震源参数研究表明,宁洱震区地震矩范围为1012~1018N·m,震源破裂半径为300~3500m,应力降为0.0044~14MPa。高应力降地震事件主要发生在4~10km深度范围内,表明该深度区是宁洱地震的主要活动区域。地震应力降随时间逐渐衰减,表明宁洱地震序列类型为主震—余震型。  相似文献   

2.
利用地震波资料对澄江5.2级地震序列的震源机制、震源应力场和震源断层作了分析研究。结果表明,整个序列发展中,震源区及附近、构造应力场以南东东方向、水平作用为主的压应力场为主。其次还有南南东向、水平作用为主的压应力场的作用。由序列震源机制解分析,主震发震断层是走向北北东、倾角较陡的断层面,在南南东-南东向,接近水平的压应力场作用下,该断层面具有以左旋走滑为主的错动性质。该断层面是序列的主破裂面。在序列发展过程中,北西西-北西向断层也参与了活动。有的余震,虽然发生在与主破裂面一致或接近的断层面上,但破裂错动的旋性发生了变化,出现了相对主破裂事件的反向错动。极少数余震破裂错动性质呈现以倾向滑动为主的特征。在序列发展过程中,破裂面及其错动性质显地复杂。由于强震的发生,主破裂的错动,使得震源区局部应力场状态错综复杂。  相似文献   

3.
Natural gases discovered up to now in Lishui Sag,the East China Sea Basin,differ greatly in gaseous compositions,of which hydrocarbon gases amount to 2%―94%while non-hydrocarbon gases are dominated by CO2.Their hydrocarbon gases,without exception,contain less than 90%of methane and over 10%of C2 heavier hydrocarbons,indicating a wet gas.Carbon isotopic analyses on these hydrocarbon gases showed thatδ13C 1 ,δ13C 2 andδ13C 3 are basically lighter than-44‰,-29‰and-26‰, respectively.The difference in carbon isotopic values between methane and ethane is great,suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation.δ13C CO2 values of nonhydrocarbon gases are all heavier than-10‰,indicating a typical abiogenic gas.The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit,consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter.Moreover, δ13C 1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit whileδ13C 2 andδ13C 3 values of the former are over 9‰heavier than those of the latter.Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag,where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter,therefore,natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

4.
利用晋冀鲁豫交界地区邯郸地震台网记录的地震波形资料,选取2005—2016年ML≥1.8地震事件,采用Brune震源模型,结合遗传算法得到该区中小地震震源参数,并分析各参数形态特征。研究表明:①晋冀鲁豫交界地区中小地震的地震矩取值范围1.34×1011—2.63×1015 N·m,震源半径取值范围132—1 044 m,拐角频率fc取值范围1.25—9.82 Hz,应力降取值范围0.036 4—11.063 1 MPa;②震源参数之间相互关系;③按照震中分区分析不同区域应力降分布特征,河北邯郸、邢台等地及附近地区应力降范围为0 MPa<Δσ≤5 MPa,河南濮阳以及范县和山西黎城等地及附近地区应力降范围为5 MPa <Δσ≤11.063 1 MPa,该区处于高应力背景场状态。  相似文献   

5.
利用山西数字测震台网“十五”数字化之后34次 ML2.5~ML5.2级地震波形资料,采用Atkinson方法反演出非弹性衰减Q值随频率f的关系为Q( f)=469.5df0.3141;采用Moya方法反演得出41个台站的场地响应,结果显示出仪器安置在山洞且地处外界干扰小的台站没有明显的放大效应,而其它台站尽管都是基岩台...  相似文献   

6.
Introduction An earthquake of MS=7.8 occurred near the Gujarat of India on January 26, 2001, which was one of the most deadly earthquakes since there was the record in the Indian history (Bendick, et al, 2001; Gupta, et al, 2001). The USGS of USA determined the origin time of the earthquake to be 3h16min41s (UTC), and the epicenter location to be 70.32篍, 23.40篘. Shortly after the earthquake, the moment tensor solutions or focal mechanisms and other related parameters were offered by s…  相似文献   

7.
Twenty-two earthquakes (M L=2.2–3.7) in the joint region of Xianshuihe, Longmenshan and An’ninghe faults are studied in this paper. The source mechanism solutions of these events are obtained using P-wave first motion method, and the characteristics of the source stress field and rupture in the joint region are summarized preliminarily with some results of other researchers. Being strongly extruded by the approximately horizontal regional stress with the direction from north-west to south-east and the effect of the complex tectonics in the region, the source stress field has complex and variable characteristics. The earthquakes mainly show normal or strike-slip faults in Yajiang, North-triangle and west of Chengdu-block areas, indicating that the vertical forces have been playing an important role in the source stress fields, while the earthquakes mainly show reverse or strike-slip faults in Baoxing-Tianquan area, with the horizontal components of the principal pressure stress axes identical to the south-west direction to which the shallow mass is moving. We think that the manifold combinations of earthquake faults are the micro-mechanism based upon which the large regional shallow crust mass has been moving continually.  相似文献   

8.
IntroductionSichuan region is one of the extruded and connected parts between the Qinghai-Xizang (Tibet) Plateau and Yangtze block. And the joint region of Xianshuihe, Longmenshan and An(ninghe faults reflects the structure characteristics formed by the Qinghai-Xizang Plateau(s extruding to Yangtze block and the Sichuan basin evolutionary process as fore-land basin. The researches on seismic activity in Sichuan region were mainly around Xianshuihe, Longmenshan and An(ninghe faults separ…  相似文献   

9.
Introduction An MS=6.0 earthquake occurred on February 23, 2001 in Yajiang county, Sichuan Province. The earthquake is located on the east of the southeast segment of the Litang-Dewu fault with strike of NW. Before the event, on February 14, an MS=5.0 earthquake took place nearly in the same place. In 1948 an MS=7.3 earthquake occurred on the northwestern segment of the Litang fault. The length of the surface rupture belt caused by the earthquake is 70 km, which extended from Litang to…  相似文献   

10.
The source parameters, such as moment tensor, focal mechanism, source time function (STF) and temporal-spatial rupture process, were obtained for the January 26, 2001, India, M S=7.8 earthquake by inverting waveform data of 27 GDSN stations with epicentral distances less than 90°. Firstly, combining the moment tensor inversion, the spatial distribution of intensity, disaster and aftershocks and the orientation of the fault where the earthquake lies, the strike, dip and rake of the seismogenic fault were determined to be 92°, 58° and 62°, respectively. That is, this earthquake was a mainly thrust faulting with the strike of near west-east and the dipping direction to south. The seismic moment released was 3.5×1020 Nm, accordingly, the moment magnitude M W was calculated to be 7.6. And then, 27 P-STFs, 22 S-STFs and the averaged STFs of them were determined respectively using the technique of spectra division in frequency domain and the synthetic seismogram as Green’s functions. The analysis of the STFs suggested that the earthquake was a continuous event with the duration time of 19 s, starting rapidly and ending slowly. Finally, the temporal-spatial distribution of the slip on the fault plane was imaged from the obtained P-STFs and S-STFs using an time domain inversion technique. The maximum slip amplitude on the fault plane was about 7 m. The maximum stress drop was 30 MPa, and the average one over the whole rupture area was 7 MPa. The rupture area was about 85 km long in the strike direction and about 60 km wide in the down-dip direction, which, equally, was 51 km deep in the depth direction. The rupture propagated 50 km eastwards and 35 km westwards. The main portion of the rupture area, which has the slip amplitude greater than 0.5 m, was of the shape of an ellipse, its major axis oriented in the slip direction of the fault, which indicated that the rupture propagation direction was in accordance with the fault slip direction. This phenomenon is popular for strike-slip faulting, but rather rare for thrust faulting. The eastern portion of the rupture area above the initiation point was larger than the western portion below the initiation point, which was indicative of the asymmetrical rupture. In other words, the rupturing was kind of unilateral from west to east and from down to up. From the snapshots of the slip-rate variation with time and space, the slip rate reached the largest at the 4th second, that was 0.2 m/s, and the rupture in this period occurred only around the initiation point. At the 6th second, the rupture around the initiation point nearly stopped, and started moving outwards. The velocity of the westward rupture was smaller than that of the eastward rupture. Such rupture behavior like a circle mostly stopped near the 15th second. After the 16th second, only some patches of rupture distributed in the outer region. From the snapshots of the slip variation with time and space, the rupture started at the initiation point and propagated outwards. The main rupture on the area with the slip amplitude greater than 5 m extended unilaterally from west to east and from down to up between the 6th and the 10th seconds, and the western segment extended a bit westwards and downwards between the 11th and the 13th seconds. The whole process lasted about 19 s. The rupture velocity over the whole rupture process was estimated to be 3.3 km/s. Foundation item: 973 Project (G1998040705) from Ministry of Science and Technology, P. R. China, and the National Science Foundation of China under grant No.49904004. Contribution No. 02FE2026, Institute of Geophysics, China Seismological Bureau.  相似文献   

11.
12.
The new inversion algorithm developed based on the recent progress in the nonlinear programming study by us is used to invert the earthquake source process of Chi Chi earthquake Mw7.6, 20 Semptember,1999, Taiwan. A curve fault model is constructed in our inversion to make the fault model close to the real rupturing fault to reduce the influence from the discrepancy between the constructed fault model and the real rupturing fault. The results show that (1) the rupture process of the Chi Chi earthquake source lasted about 32 seconds and the main faulting occurred between 6th to 21st second after the start of the ruptures and the high slip area were mainly located at the northern segment of the fault. (2) The slip was dominated by thrust faulting. The average rake angle was 64.5°, which was very consistent with those inverted by USGS, Harvard and CWB (Central Weather Bureau of Taiwan). The amount of the moment inverted in this paper was 7.76×1020 NM, which was a slightly bigger than those inverted by USGS and Harvard. (3) A clear nucleation step existed in the source faulting process and it lasted about 6 seconds. The moment release rate accelerated obviously at the end of the nucleation step. The faulting started from the southern segment and mainly occurred at the northern segment after 10 seconds. At the end of this paper, we analyzed the reliability of the inversion result via comparing with the GPS observations and discussed its scientific signification.  相似文献   

13.
The new inversion algorithm developed based on the recent progress in the nonlinear programming study by us is used to invert the earthquake source process of Chi Chi earthquake M w7.6, 20 Semptember, 1999, Taiwan. A curve fault model is constructed in our inversion to make the fault model close to the real rupturing fault to reduce the influence from the discrepancy between the constructed fault model and the real rupturing fault. The results show that (1) the rupture process of the Chi Chi earthquake source lasted about 32 seconds and the main faulting occurred between 6th to 21st second after the start of the ruptures and the high slip area were mainly located at the northern segment of the fault. (2) The slip was dominated by thrust faulting. The average rake angle was 64.5°, which was very consistent with those inverted by USGS, Harvard and CWB (Central Weather Bureau of Taiwan). The amount of the moment inverted in this paper was 7.76×1020 NM, which was a slightly bigger than those inverted by USGS and Harvard. (3) A clear nucleation step existed in the source faulting process and it lasted about 6 seconds. The moment release rate accelerated obviously at the end of the nucleation step. The faulting started from the southern segment and mainly occurred at the northern segment after 10 seconds. At the end of this paper, we analyzed the reliability of the inversion result via comparing with the GPS observations and discussed its scientific signification.  相似文献   

14.
河南省孟州市石庄位于济源盆地东南缘,地层属华北地层区山西分区太行山小区。出露的主要地层有中生界三叠系、新生界第三系、第四系。中生代经历了长期陆相湖盆沉积阶段,岩石中有机物含量高。所以该区中生界地层一直作为煤系地层并进行了煤矿资源的勘查工作。本文通过对中生界上三叠统谭庄组的灰黑色岩系取样分析研究,认为该区上三叠统谭庄组为一套含生油岩地层,是济源盆地东侧生油区。在具备一定的运移、储集及盖层等地质条件下可以形成一定规模的油气资源。为今后在河南西北济源盆地寻找油气资源提供了启示。  相似文献   

15.
Congener specific determination of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) was carried out in 21 surface sediment samples and a sediment core from Masan Bay, Korea. Among the 40 PBDE congeners targeted only 29 were detectable. PBDE congener profile within sediments was dominated by BDE-209 followed by BDEs-99, -47, -153 and -183, sequentially. In surface sediments, the average ΣPBDEs levels approached that of average ΣPCBs values. However, trends observed in the sediment core suggest that this pattern will alter over time and result in higher surface sediment PBDE concentrations than PCBs in future. Various diffuse and point sources for PBDEs and PCBs were identified in this location. Shipping and other industrial activities were associated with PCB contamination while domestic and industrial waste discharges corresponded with PBDE contamination. The average concentration for PBDEs and PCBs in surface sediments were 5.7, 7.2 ng/g dry weight, respectively.  相似文献   

16.
The source parameters of the Bohai Sea earthquake, July 18, 1969 and Yongshan, Yunnan earthquake, May 11, 1974 were determined by full — wave theory synthetic seismograms of teleseismic P waves. P+pP+sP wereform were calculated with WKBJ approximation and real integral paths. One — dimensional unilateral, finite propagation source was also considered. By trail — and — error in comparing the theoretical seismograms with the observational ones of WWSSN stations, the source parameters were obtained as follow: for Bohai earthquake, φ=195°, δ=85°, λ=65°,M o=0.9×1019Nm,L=59.9km.V R=3.5km/s, ∧ R =160°; for Yongshan earthquake, φ=240°, δ=80°, ∧=150°,M o=1.3×1018Nm,L=48.8km,V R=3km/s, ∧ R =−10°, where φ is strike, δ dip angle, λ slip angle,M o seismic moment,L rupture length,V R rupture propagation speed. As III type fractures the faulting propagated along the fault planes, and ∧ R is the angle from the strike to the propagation direction. Yongshan earthquake showed complexity in its focal process, having four sub—ruptures during the first 60 seconds. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 1–8, 1991.  相似文献   

17.
Asingle-stationcodasolutionforsource,atenuationandsitefactorsTIAN-ZHONGZHANG(张天中)YUN-SHENGMA(马云生)RONG-LIANGHUANG(黄蓉良)Institu...  相似文献   

18.
CharacteristicsoffaultrocksandpaleoearthquakesourcealongtheKoktokayErtaifaultzone,Xinjiang,ChinaLANBINSHI1)(史兰斌)CHUANYON...  相似文献   

19.
20.
从全球数字地震台网的长周期记录中,选择了震中距小于90的27个台站的54个P波震相和44个S波震相资料.首先,用波形反演方法确定了2001年1月26日印度古杰拉特(Gujarat)MS7.8地震的地震矩张量、震源机制、震源时间函数和时空破裂过程等震源参数.通过矩张量反演,并根据Kutch Mainland断层的走向、地震烈度的空间分布、余震震源的空间分布和震害的空间分布,确认2001年1月26日印度古杰拉特MS7.8地震的发震断层的走向为92、倾角为58、滑动角为62,即一走向近东-西向、断层面向南倾斜、以逆冲为主的左旋-逆断层.这次地震所释放的地震矩为3.51020 Nm,矩震级MW=7.6.然后,借助合成地震图,采用频率域求谱商的方法,得到了依赖于台站方位的27个P波震源时间函数、22个S波震源时间函数以及平均的P波震源时间函数和S波震源时间函数.对震源时间函数的分析表明,这次地震是一次连续的破裂事件,开始比较急遽,但结束比较迟缓,总持续时间约19 s.最后,以所提取的P波和S波震源时间函数为资料,采用时间域的反演技术得到了断层面上滑动的时空分布.滑动量在断层面上的静态分布表明,断层面上的最大滑动量约为7 m.断层面上的最大应力降约为30 MPa,平均应力降约为7 MPa.滑动量大于0.5 m的区域在走向方向长85 km,在断层面倾斜方向宽约60 km(相应地,在深度方向约51 km).破裂向东扩展约50 km,向西扩展约35 km.滑动量大于0.5 m的区域的主要部分呈椭圆形,其长轴取向与断层滑动方向一致.表明此区域破裂扩展的方向即是断层错动的方向.这种现象对于走滑断层情形是多见的,但对逆冲断层情形却少见.断层面上初始破裂点以东、以上部分面积大于初始破裂点以西、以下部分的面积,这是破裂非对称性的表现,表明破裂具有自西向东、自下向上单侧破裂的特征.从滑动率随时空变化的快照可以看出,滑动率在第4 s达到最大值,此时滑动率约为0.2 m/s,滑动基本上发生在破裂起始点及其周围.从第6 s开始,起始点的破裂基本结束,破裂开始向外围扩展.破裂向西的扩展速度明显小于向东的扩展速度.在第15 s,这种环形的扩展基本结束.自16 s以后,主要是一些零星的破裂点分布在破裂区的外围.从滑动量随时空变化的快照看,破裂自起始点开始后,逐渐向四周扩展.主要的破裂(滑动量大于5 m的区域)在6~10 s,具有明显的自西向东、向上的单侧破裂特征.在第11~13 s,破裂的西端向西、向下有所扩展.整个破裂过程持续约19 s.在整个破裂过程中的平均破裂速度约为3.3 km/s.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号