首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Delineation of potential seismic sources for seismic zoning of Iran   总被引:3,自引:1,他引:2  
A total of 235 potential seismic sources in Iran and neighboring regions are delineated based on available geological, geophysical, tectonic and earthquake data for seismic hazard assessment of the country. In practice, two key assumptions are considered; first, the assumption of earthquake repeatedness, implying that major earthquakes occur preferentially near the sites of previous earthquakes; second, the assumption of tectonic analogy, which implies that structures of analogous tectonic setting are capable of generating same size earthquakes. A two-step procedure is applied for delineation of seismic sources: first, demarcation of seismotectonic provinces; second, determination of potential seismic sources. Preferentially, potential seismic sources are modeled as area sources, in which the configuration of each source zone is controlled, mainly, by the extent of active faults, the mechanism of earthquake faultings and the seismogenic part of the crust.  相似文献   

3.
Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.  相似文献   

4.
Modern earthquake loss models make use of earthquake catalogs relevant to the seismic hazard assessment upon seismicity and seismotectonic analysis. The main objective of this paper is to investigate a recently compiled catalog (National Institute of Meteorology or INM catalog: 412-2011) and to generate seismic hazard maps through classical probabilistic seismic hazard assessment (PSHA) and smoothed-gridded seismicity models for Tunisia. It is now established with the local earthquake bulletin that the recent seismicity of Tunisia is sparse and moderate. Therefore, efforts must be undertaken to elaborate a robust hazard analysis for risk assessment and seismic design purposes. These recommendations follow the recently published reports by the World Bank that describe the seismic risk in Tunis City as being beyond a tolerable level with an MSK intensity level of VII. Some attempts were made during the past two decades to assess the seismic hazard for Tunisia and they have mostly failed to properly investigate the historical and instrumental seismicity catalog. This limitation also exists for the key aspect of epistemic and random uncertainties impact on the final seismic hazard assessment. This study also investigates new ground motion prediction equations suitable for use in Tunisia. The methodology applied herein uses, for the first time in PSHA of Tunisia, seismicity parameters integrated in logic tree framework to capture epistemic uncertainties through three different seismic source models. It also makes use of the recently released version of OpenQuake engine; an open-source tool for seismic hazard and risk assessment developed in the framework of the Global Earthquake Model.  相似文献   

5.
Probabilistic seismic hazard assessment for Thailand   总被引:3,自引:1,他引:2  
A set of probabilistic seismic hazard maps for Thailand has been derived using procedures developed for the latest US National Seismic Hazard Maps. In contrast to earlier hazard maps for this region, which are mostly computed using seismic source zone delineations, the presented maps are based on the combination of smoothed gridded seismicity, crustal-fault, and subduction source models. Thailand’s composite earthquake catalogue is revisited and expanded, covering a study area limited by 0°–30°N Latitude and 88°–110°E Longitude and the instrumental period from 1912 to 2007. The long-term slip rates and estimates of earthquake size from paleoseismological studies are incorporated through a crustal fault source model. Furthermore, the subduction source model is used to model the megathrust Sunda subduction zones, with variable characteristics along the strike of the faults. Epistemic uncertainty is taken into consideration by the logic tree framework incorporating basic quantities, such as different source modelling, maximum cut-off magnitudes and ground motion prediction equations. The ground motion hazard map is presented over a 10 km grid in terms of peak ground acceleration and spectral acceleration at 0.2, 1.0, and 2.0 undamped natural periods and a 5% critical damping ratio for 10 and 2% probabilities of exceedance in 50 years. The presented maps give expected ground motions that are based on more extensive data sources than applied in the development of previous maps. The main findings are that northern and western Thailand are subjected to the highest hazard. The largest contributors to short- and long-period ground motion hazard in the Bangkok region are from the nearby active faults and Sunda subduction zones, respectively.  相似文献   

6.
A new seismic hazard model for Cairo, the capital city of Egypt is developed herein based on comprehensive consideration of uncertainties in various components of the probabilistic seismic hazard analysis. The proposed seismic hazard model is developed from an updated catalogue of historical and instrumental seismicity, geodetic strain rates derived from GPS-based velocity-field of the crust, and the geologic slip rates of active faults. The seismic source model consists of area sources and active faults characterised to forecast the seismic productivity in the region. Ground motion prediction models are selected to describe the expected ground motion at the sites of interest. The model accounts for inherent epistemic uncertainties of statistical earthquake recurrence; maximum magnitude; ground motion prediction models, and their propagation toward the obtained results. The proposed model is applied to a site-specific hazard analysis for Kottamiya, Rehab City and Zahraa-Madinat-Nasr (hereinafter referred to as Zahraa) to the East of Cairo (Egypt). The site-specific analysis accounts for the site response, through the parameterization of the sites in terms of average 30-m shear-wave velocity (Vs30). The present seismic hazard model can be considered as a reference model for earthquake risk mitigation and proper resilience planning.  相似文献   

7.
Li Ying 《中国地震研究》2007,21(4):379-387
Based on basic data used in compiling the Zonation Map of Earthquake Ground Motion Parameters in China, recent research on seismic safety assessment for engineering sites in central-southern Hunan Province, the new attenuation relationships of moderate earthquakes and the background seismicity data obtained by modern instrumental earthquake records since 1970, a new result of seismic zonation of central-southern Hunan Province is provided. The result shows that the area with PGA=0.05g has obviously increased in the new map compared with the previous one and is relatively consistent with the seismic disaster characteristics of moderate earthquakes that took place in the central-southern part of Hunan in recent years. This result will benefit the research and compilation of a new-generation seismic zonation map of earthquake ground motion parameters and the seismic hazard assessment in the moderate earthquake active regions in the central and eastern part of China.  相似文献   

8.
Probabilistic earthquake hazard analysis for Cairo,Egypt   总被引:1,自引:1,他引:0  
Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region’s political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input’s element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1°?×?0.1 ° spacing for all of Cairo’s districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone’s districts (e.g., El Nozha) and the lowest values at the northern and western zone’s districts (e.g., El Sharabiya and El Khalifa).  相似文献   

9.
Over the years, several local and regional seismic hazard studies have been conducted for the estimation of the seismic hazard in Turkey using different statistical processing tools for instrumental and historical earthquake data and modeling the geologic and tectonic characteristics of the region. Recently developed techniques, increased knowledge and improved databases brought the necessity to review the national active fault database and the compiled earthquake catalogue for the development of a national earthquake hazard map. A national earthquake strategy and action plan were conceived and accordingly with the collaboration of the several institutions and expert researchers, the Revision of Turkish Seismic Hazard Map Project (UDAP-Ç-13-06) was initiated, and finalized at the end of 2014. The scope of the project was confined to the revision of current national seismic hazard map, using the state of the art technologies and knowledge of the active fault, earthquake database, and ground motion prediction equations. The following two seismic source zonation models are developed for the probabilistic earthquake hazard analysis: (1) Area source model, (2) Fault and spatial smoothing seismic source model (FSBCK). In this study, we focus on the development and the characterization of the Fault Source model, the background spatially smoothed seismicity model and intrinsic uncertainty on the earthquake occurrence-rates-estimation. Finally, PSHA results obtained from the fault and spatial smoothed seismic source model are presented for 43, 72, 475 and 2475 years return periods (corresponding to 69, 50, 10, and 2% probability of exceedance in 50 years) for PGA and 5% damped spectral accelerations at 0.2 and 1.0 s.  相似文献   

10.
The collaborative project Earthquake Model of the Middle East (EMME, 2010–2015) brought together scientists and engineers from the leading research institutions in the region and delivered state-of-the-art seismic hazard assessment covering Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Iraq, Jordan, Lebanon, Palestine, Pakistan, Syria and Turkey. Their efforts have been materialized in the first homogenized seismic hazard model comprising earthquake catalogues, mapped active faults, strong motions databank, ground motion models and the estimated ground motion values for various intensity measure types and relevant return periods (e.g. 475–5000 years). The reference seismic hazard map of the Middle East, depicts the mean values of peak ground acceleration with a 10% chance of exceedance in 50 years, corresponding to a mean return period of 475 years. A full resolution poster is provided with this contribution.  相似文献   

11.
K-means cluster analysis and seismicity partitioning for Pakistan   总被引:2,自引:2,他引:0  
Pakistan and the western Himalaya is a region of high seismic activity located at the triple junction between the Arabian, Eurasian and Indian plates. Four devastating earthquakes have resulted in significant numbers of fatalities in Pakistan and the surrounding region in the past century (Quetta, 1935; Makran, 1945; Pattan, 1974 and the recent 2005 Kashmir earthquake). It is therefore necessary to develop an understanding of the spatial distribution of seismicity and the potential seismogenic sources across the region. This forms an important basis for the calculation of seismic hazard; a crucial input in seismic design codes needed to begin to effectively mitigate the high earthquake risk in Pakistan. The development of seismogenic source zones for seismic hazard analysis is driven by both geological and seismotectonic inputs. Despite the many developments in seismic hazard in recent decades, the manner in which seismotectonic information feeds the definition of the seismic source can, in many parts of the world including Pakistan and the surrounding regions, remain a subjective process driven primarily by expert judgment. Whilst much research is ongoing to map and characterise active faults in Pakistan, knowledge of the seismogenic properties of the active faults is still incomplete in much of the region. Consequently, seismicity, both historical and instrumental, remains a primary guide to the seismogenic sources of Pakistan. This study utilises a cluster analysis approach for the purposes of identifying spatial differences in seismicity, which can be utilised to form a basis for delineating seismogenic source regions. An effort is made to examine seismicity partitioning for Pakistan with respect to earthquake database, seismic cluster analysis and seismic partitions in a seismic hazard context. A magnitude homogenous earthquake catalogue has been compiled using various available earthquake data. The earthquake catalogue covers a time span from 1930 to 2007 and an area from 23.00° to 39.00°N and 59.00° to 80.00°E. A threshold magnitude of 5.2 is considered for K-means cluster analysis. The current study uses the traditional metrics of cluster quality, in addition to a seismic hazard contextual metric to attempt to constrain the preferred number of clusters found in the data. The spatial distribution of earthquakes from the catalogue was used to define the seismic clusters for Pakistan, which can be used further in the process of defining seismogenic sources and corresponding earthquake recurrence models for estimates of seismic hazard and risk in Pakistan. Consideration of the different approaches to cluster validation in a seismic hazard context suggests that Pakistan may be divided into K?=?19 seismic clusters, including some portions of the neighbouring countries of Afghanistan, Tajikistan and India.  相似文献   

12.
This paper presents a Bayesian methodology for updating the seismic hazard curves. The methodology is based on the comparison of predictive exceedance rates of a fixed acceleration level (given by the seismic hazard curves) and the observed exceedance rates in some selected sites. The application of the methodology needs, firstly, the definition of a prior probabilistic seismic hazard assessment based in a logic tree. Each main branch corresponds to a probabilistic model of calculus of seismic hazard. The method considers that, initially (or a priori), the weights of all branches of the logic tree are equivalent. Secondly, the method needs to compile the observations in the region. They are introduced in a database containing the recorded acceleration data (during the instrumental period). Nevertheless, the instrumental period in stable zones (as France) shows only very low acceleration levels recorded during a short observation period. Then, a method to enlarge the REX (number of observations) is presented taking into account the historical data and defining “synthetic” accelerations in the sites of observation. The synthetic REX allows to expand the period of observation and to increase the acceleration thresholds used in the Bayesian updating process. The application of the Bayesian approach leads to a new and more objective definition of the weights of each branch of the logic tree and, therefore, to new seismic hazard curves (mean and centiles). The Bayesian approach doesn’t change the probabilistic models (seismic hazard curves). It only modifies the weights of each branch of the logic tree.  相似文献   

13.
Seismic hazard assessment is carried out by utilizing deterministic approach to evaluate the maximum expected earthquake ground motions along the Western Coastal Province of Saudi Arabia. The analysis is accomplished by incorporating seismotectonic source model,determination of earthquake magnitude(Mmax), set of appropriate ground motion predictive equations(GMPE), and logic tree sequence. The logic tree sequence is built up to assign weight to ground motion scaling relationships. Contour maps of ground acceleration are generated at different spectral periods. These maps show that the largest ground motion values are emerged in northern and southern regions of the western coastal province in Saudi Arabia in comparison with the central region.  相似文献   

14.
In this paper, a new probabilistic seismic hazard assessment (PSHA) is presented for Peninsular India. The PSHA has been performed using three different recurrence models: a classical seismic zonation model, a fault model, and a grid model. The development of a grid model based on a non-parameterized recurrence model using an adaptation of the Kernel-based method that has not been applied to this region before. The results obtained from the three models have been combined in a logic tree structure in order to investigate the impact of different weights of the models. Three suitable attenuation relations have been considered in terms of spectral acceleration for the stable continental crust as well as for the active crust within the Gujarat region. While Peninsular India has experienced large earthquakes, e.g., Latur and Jabalpur, it represents in general a stable continental region with little earthquake activity, as also confirmed in our hazard results. On the other hand, our study demonstrates that both the Gujarat and the Koyna regions are exposed to a high seismic hazard. The peak ground acceleration for 10 % exceedance in 50 years observed in Koyna is 0.4 g and in the Kutch region of Gujarat up to 0.3 g. With respect to spectral acceleration at 1 Hz, estimated ground motion amplitudes are higher in Gujarat than in the Koyna region due to the higher frequency of occurrence of larger earthquakes. We discuss the higher PGA levels for Koyna compared Gujarat and do not accept them uncritically.  相似文献   

15.
Modern Earthquake Risk Assessment (ERA) methods usually require seismo-tectonic information for Probabilistic Seismic Hazard Assessment (PSHA) that may not be readily available in developing countries. To bypass this drawback, this paper presents a practical event-based PSHA method that uses instrumental seismicity, available historical seismicity, as well as limited information on geology and tectonic setting. Historical seismicity is integrated with instrumental seismicity to determine the long-term hazard. The tectonic setting is included by assigning seismic source zones associated with known major faults. Monte Carlo simulations are used to generate earthquake catalogues with randomized key hazard parameters. A case study region in Pakistan is selected to demonstrate the effectiveness of the method. The results indicate that the proposed method produces seismic hazard maps consistent with previous studies, thus being suitable for generating such maps in regions where limited data are available. The PSHA procedure is developed as an integral part of an ERA framework named EQRAM. The framework is also used to determine seismic risk in terms of annual losses for the study region.  相似文献   

16.
Izmir, the third largest city and one of the major economic centers in Turkey, has more than three million residents and one-half million buildings. The city, located in a seismically active region in western Anatolia, was a subject of the 1997 RADIUS (Risk Assessment Tools for Diagnosis of Urban Areas against Seismic Disaster) project. In this paper, the seismic hazard of Izmir is investigated through probabilistic seismic hazard assessment. First, the seismic setting of Izmir is presented. Considering the statistics of earthquakes that took place in the region during the period 1900–2005, a simple seismic hazard model is used to facilitate the assessment. To account for modeling uncertainties associated with the values of seismicity parameters, a logic tree procedure is employed in carrying out the seismic hazard computations. The resulting weighted average seismic hazard, presented in terms of peak ground acceleration and associated probability of exceedence, could be considered the “best estimate” of seismic hazard for Izmir. Accordingly, for a return period of 475 years, for rock sites, a PGA value of 0.34 g is calculated. This PGA hazard estimate is close to the current code-recommended design acceleration level for Izmir.  相似文献   

17.
A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA(T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA(T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.  相似文献   

18.
A vital component of any seismic hazard analysis is a model for predicting the expected distribution of ground motions at a site due to possible earthquake scenarios. The limited nature of the datasets from which such models are derived gives rise to epistemic uncertainty in both the median estimates and the associated aleatory variability of these predictive equations. In order to capture this epistemic uncertainty in a seismic hazard analysis, more than one ground-motion prediction equation must be used, and the tool that is currently employed to combine multiple models is the logic tree. Candidate ground-motion models for a logic tree should be selected in order to obtain the smallest possible suite of equations that can capture the expected range of possible ground motions in the target region. This is achieved by starting from a comprehensive list of available equations and then applying criteria for rejecting those considered inappropriate in terms of quality, derivation or applicability. Once the final list of candidate models is established, adjustments must be applied to achieve parameter compatibility. Additional adjustments can also be applied to remove the effect of systematic differences between host and target regions. These procedures are applied to select and adjust ground-motion models for the analysis of seismic hazard at rock sites in West Central Europe. This region is chosen for illustrative purposes particularly because it highlights the issue of using ground-motion models derived from small magnitude earthquakes in the analysis of hazard due to much larger events. Some of the pitfalls of extrapolating ground-motion models from small to large magnitude earthquakes in low seismicity regions are discussed for the selected target region.  相似文献   

19.
We developed a seismic hazard model for Taiwan that integrates all available tectonic, seismicity, and seismic hazard information in the region to provide risk managers and engineers with a model they can use to estimate earthquake losses and manage seismic risk in Taiwan. The seismic hazard model is composed of two major components: a seismotectonic model and a ground-shaking model. The seismotectonic model incorporates earthquakes that are expected to occur on the Ryukyu and Manila subduction zones, on the intermediate-depth Wadati-Benioff seismicity zones, on the active crustal faults, and within seismotectonic provinces. The active crustal faults include the Chelungpu fault zone, the source of the damaging MW 7.6 Chi-Chi earthquake, and the Huangchi-Hsiaoyukeng fault zone that forms the western boundary of the Taipei Basin. The ground-shaking model uses both US, worldwide, and Taiwanese attenuation relations to provide robust estimates of peak ground acceleration and response spectral acceleration on a reference site condition for shallow crustal and subduction zone earthquakes. The ground shaking for other site conditions is obtained by applying a nonlinear soil-amplification factor defined in terms of the average shear-wave velocity in the top 30 m of the soil profile, consistent with the methodology used in the current US and proposed Taiwan building codes.  相似文献   

20.
The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号