首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   

2.
—?The procedure developed by Kijko and Sellevoll (1989, 1992) and Kijko and Graham (1998, 1999) is used to estimate seismic hazard parameters in north Algeria. The area-specific seismic hazard parameters that were calculated consist of the b value of the Gutenberg–Richter frequency–magnitude relation, the activity rate λ(M) for events above the magnitude M, and the maximum regional magnitude M max. These parameters were calculated for each of the six seismogenic zones of north Algeria. The site-specific seismic hazard was calculated in terms of the maximum possible PGA at hypothetical engineering structures (HES), situated in each of the six seismogenic zones with coordinates corresponding with those of the six most industrial and populated cities in Algeria.  相似文献   

3.
In this study, the spatial distributions of seismicity and seismic hazard were assessed for Turkey and its surrounding area. For this purpose, earthquakes that occurred between 1964 and 2004 with magnitudes of M ≥ 4 were used in the region (30–42°N and 20–45°E). For the estimation of seismicity parameters and its mapping, Turkey and surrounding area are divided into 1,275 circular subregions. The b-value from the Gutenberg–Richter frequency–magnitude distributions is calculated by the classic way and the new alternative method both using the least-squares approach. The a-value in the Gutenberg–Richter frequency–magnitude distributions is taken as a constant value in the new alternative method. The b-values calculated by the new method were mapped. These results obtained from both methods are compared. The b-value shows different distributions along Turkey for both techniques. The b-values map prepared with new technique presents a better consistency with regional tectonics, earthquake activities, and epicenter distributions. Finally, the return period and occurrence hazard probability of M ≥ 6.5 earthquakes in 75 years were calculated by using the Poisson model for both techniques. The return period and occurrence hazard probability maps determined from both techniques showed a better consistency with each other. Moreover, maps of the occurrence hazard probability and return period showed better consistency with the b-parameter seismicity maps calculated from the new method. The occurrence hazard probability and return period of M ≥ 6.5 earthquakes were calculated as 90–99% and 5–10 years, respectively, from the Poisson model in the western part of the studying region.  相似文献   

4.
In order to obtain a uniform magnitude catalogue, surface-wave magnitudes Ms and broad-band body-wave magnitudes mB have been determined for large shallow earthquakes from 1904 to 1980. In making the catalogue homogeneous, the author consistently adheres to the original definitions of Ms and mB given by Gutenberg (1945) and Gutenberg and Richter (1956). The determinations of Ms and mB are all based on the amplitude and period data listed in Gutenberg and Richter's unpublished notes, bulletins from stations worldwide, and other basic information. mB is measured on broad-band instruments in periods of ~8 s. Consistency of the magnitude determinations from these different sources is carefully checked in detail. More than 900 shallow shocks of magnitude 7 and over are catalogued. The meaning of the magnitude scales in various catalogues is examined in terms of Ms and mB. Most of the magnitudes listed by Gutenberg and Richter (1954) in their “Seismicity of the Earth” are basically Ms for large shocks shallower than 40 km, but are basically mB for large shocks at depths of 40–60 km. The surface-wave magnitudes given by “Earthquake Data Reports” are higher than Ms by 0.2 unit whether the combined horizontal amplitude or the vertical amplitude is used. mB and the currently used 1 s body-wave magnitude are measured at different periods and should not be directly compared.  相似文献   

5.
—The maximum likelihood estimation of earthquake hazard parameters has been made in the Himalayas and its surrounding areas on the basis of a procedure which utilizes data containing complete files of the most recent earthquakes. The entire earthquake catalogue used covers the period from 1900–1990. The maximum regional magnitude M max?, the activity rate of the seismic event λ, the mean return period R of earthquakes with a certain lower magnitude M max≥ m along with their probability of occurrence, as well as the parameter b of of Gutenberg Richter magnitude-frequency relationship, have been determined for six different seismic zones of the Himalayas and its vicinity. It is shown that in general the hazard is higher in the zone NEI and BAN than the other four zones. The high difference of the b parameter and the hazard level from zone to zone reflect the high seismotectonic complexity and crustal heterogeneity.  相似文献   

6.
Prediction of magnitude of the largest potentially induced seismic event   总被引:1,自引:0,他引:1  
We propose a method for determining the possible magnitude of a potentially largest induced seismic event derived from the Gutenberg–Richter law and an estimate of total released seismic moment. We emphasize that the presented relationship is valid for induced (not triggered) seismicity, as the total seismic moment of triggered seismicity is not bound by the injection. The ratio of the moment released by the largest event and weaker events is determined by the constants a and b of the Gutenberg–Richter law. We show that for a total released seismic moment, it is possible to estimate number of events greater than a given magnitude. We determine the formula for the moment magnitude of a probable largest seismic event with one occurrence within the recurrence interval (given by one volumetric change caused by mining or injecting). Finally, we compare theoretical and measured values of the moment magnitudes of the largest induced seismic events for selected geothermal and hydraulic fracturing projects.  相似文献   

7.
Forecasts of future earthquake hazard in the San Francisco Bay region (SFBR) are dependent on the distribution used for the possible magnitude of future events. Based on the limited observed data, it is not possible to statistically distinguish between many distributions with very different tail behavior. These include the modified and truncated Gutenberg–Richter distributions, and a composite distribution assembled by the Working Group on California Earthquake Probabilities. There is consequent ambiguity in the estimated probability of very large, and hence damaging, events. A related question is whether the energy released in earthquakes is a small or large proportion of the stored energy in the crust, corresponding loosely to the ideas of self-organized criticality, and intermittent criticality, respectively. However, the SFBR has experienced three observed accelerating moment release (AMR) cycles, terminating in the 1868 Hayward, 1906 San Andreas and 1989 Loma Prieta events. A simple stochastic model based on elastic rebound has been shown to be capable of producing repeated AMR cycles in large synthetic catalogs. We propose that such catalogs can provide the basis of a test of a given magnitude distribution, via comparisons between the AMR properties of the real and synthetic data. Our results show that the truncated Gutenberg–Richter distribution produces AMR behavior closest to the observed AMR behavior. The proviso is that the magnitude parameters b and m max are such that a sequence of large events that suppresses activity for several centuries is unlikely to occur. Repeated simulation from the stochastic model using such distributions produces 30-year hazard estimates at various magnitudes, which are compared with the estimates from the 2003 Working Group on California Earthquake Probabilities.  相似文献   

8.
Estimation of Maximum Earthquakes in Northeast India   总被引:1,自引:0,他引:1  
We attempt to estimate possible maximum earthquakes in the northeast Indian region for four seismic source zones, namely EHZ, MBZ, EBZ, and SHZ, which encapsulates the various seismogenic structures of the region and also for combined source zones taken as a single seismic source regime. The latter case exhibits a high maximum earthquake estimate of MW 9.4 (±0.85) through Bayesian interpretation of frequency magnitude distribution with Gamma function implicating a moderate deviation from the standard Gutenberg Richter model at the higher magnitudes. However, tapering Gutenberg Richter models with corner magnitudes at MW 8.01, 8.7 and 9.1, respectively indicated maximum values corresponding to MW 8.4, 9.0, and 9.3. The former approach was applied to each of the source zones wherein the data are presented in parts according to the data completeness, thereof. EHZ, MBZ, EBZ and SHZ are seen with maximum earthquakes of MW 8.35 (±0.59), 8.79 (±0.31), 8.20 (±0.50), and 8.73 (±0.70), respectively. The maximum possible earthquakes estimated for each individual zone are seen to be lower than that estimated for the single regime. However, the pertaining return periods estimated for the combined zone are far less than those estimated for the demarcated ones.  相似文献   

9.
The method for forecasting the intensity of the aftershock processes after strong earthquakes in different magnitude intervals is considered. The method is based on the joint use of the time model of the aftershock process and the Gutenberg–Richter law. The time model serves for estimating the intensity of the aftershock flow with a magnitude larger than or equal to the magnitude of completeness. The Gutenberg–Richter law is used for magnitude scaling. The suggested approach implements successive refinement of the parameters of both components of the method, which is the main novelty distinguishing it from the previous ones. This approach, to a significant extent, takes into account the variations in the parameters of the frequency–magnitude distribution, which often show themselves by the decreasing fraction of stronger aftershocks with time. Testing the method on eight aftershock sequences in the regions with different patterns of seismicity demonstrates the high probability of successful forecasts. The suggested technique can be employed in seismological monitoring centers for forecasting the aftershock activity of a strong earthquake based on the results of operational processing.  相似文献   

10.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   

11.
We construct a single hazard function from multiple predictive parameters independently developed for moderate earthquakes in Kanto, Japan, during a learning period from 1990 to 1999, and applied to a testing period from 2000 to 2005. Here, we consider as predictive parameters the a and b values of the Gutenberg–Richter relation, the ν value (change in b value), and the Every Earthquake a Precursor According to Scale (EEPAS) model rate. To study the correlations among the parameters, we prepare two groups of space–time coordinate sets for assessment, namely the background and conditional groups selected from the learning period. The background group contains ten thousand sets of coordinates randomly selected from the space–time volume of our study. The conditional group contains 33 sets of space–time coordinates corresponding to the epicenters of the target earthquakes (M ≥ 5.0) just before their times of occurrence. Each parameter for the background group is transformed so that its distribution conforms to the standard Normal function. The mean and variance of the conditional distribution is then estimated after applying the same transformation to the conditional group. Using the means and variances of b values, ν values and EEPAS rates and the correlation matrices in the background and conditional distributions, we construct a combined hazard function following the procedure developed for normally distributed parameters. The information gain per event (IGpe) of the new hazard function is 0.26 and 0.3 units larger than that of the EEPAS rate for the learning and testing period, respectively. The R-test confirms the statistical significance of the difference in the IGpe value for the testing period.  相似文献   

12.
The seismological data in the area of induced seismicity in the region of the Nurek reservoir are analyzed. The analysis is based on the developed database for the earthquakes that occurred from 1955 to 1989 and is aimed at finding the regularities in the variations of the parameters of the transitional seismic regime caused by filling a reservoir. These parameters include the b-value—the slope of the graph of the Gutenberg–Richter frequency–magnitude relationship, the fractal dimension d of the set of the epicenters, and fracture cycle parameter q = αb ? d, where coefficient α determines the ratio between the magnitude and source size M = α log l + β. It is shown that during the filling of a reservoir, these parameters undergo statistically reliable variations: at the initial stages, the b-value increases, the fractal dimension of the set of epicenters decreases, and the fracture cycle parameter q grows and becomes positive in the middle of the time interval of reservoir filling. After a reservoir is filled, these parameters recover their background values. The aftershock sequences of the three strongest earthquakes—before, in the beginning, and in the middle of the reservoir filling period—are studied. It is confirmed that the Omori parameter p for the aftershock sequences during filling is smaller than for the earthquake before filling. Based on the dynamics of the studied parameters, it is conjectured that the relaxation time of the transitional seismic regime after the emergence of induced seismicity is about 10 years.  相似文献   

13.
The risk formula, expressing the probability of at least one occurrence of earthquakes of greater-than-design-value magnitudes over the economic life of a structure, is modified taking into consideration the probability of no-earthquake years. The annual maximum earthquake magnitudes of three scales: Richter magnitude, also known as local magnitude (ML), body-wave magnitude (Mb), and moment magnitude (MM) in a geographical area encompassing the Bingöl Province in Turkey are taken from two sources: (1) report by Kalafat et al. (2007) [14] and (2) the web site reporting data by Kandilli Observatory which has been recording earthquakes occurring in and around Turkey since 1900. Statistical frequency analyses are applied on the three sample series using various probability distribution models, and magnitude versus average return period relationships are determined. The values of the ML, Mb, and MM series for 10% and 2% risk are computed to be around 7.2 and 8.3. The tectonic structure and seismic properties of the Bingöl region are also given briefly.  相似文献   

14.
—The seismicity in the territory of China, a seismotectonically complicated region, has been examined by using three complete samples of earthquakes which occurred during the last two centuries (1800–1995). The b value of the Gutenberg-Richter relation was estimated by using this data sample. Taking into account the fact that the b value is spatially more stable than the a value, the b values were calculated at the nodes of a normal grid superposing on the entire area studied, and their distribution was examined. The results showed that the b value increases smoothly from 0.4 in inner-Mongolia to 0.8 in the east, south and southwest of China with higher values (b>0.8) in the Taiwan region. Furthermore, keeping fixed the obtained b values, the a value distribution was also examined. In order to display more detailed information about the seismicity, smaller cell surface (10,000 km2) for the calculation of the a values was chosen. The mean return periods for different cutoff magnitudes were also calculated for each of these small cells. It was observed that the mean return periods are the shortest ones in China, which are 10 and 50 years for the magnitude larger than or equal to 6.0 and 7.0, respectively.  相似文献   

15.
Seismicity has been identified as an example of a natural, nonlinear system for which the distribution of frequency and event size follow a power law called the “Gutenberg–Richter (G-R) law.” The parameters of the G-R law, namely b- and a-values, have been widely used in many studies about seismic hazards, earthquake forecasting models, and other related topics. However, the plausibility of the power law model and applicability of parameters were mainly verified by statistical error σ of the b-value, the effectiveness of which is still doubtful. In this research, we used a newly defined p value developed by Clausetet al. (Power-Law Distributions in Empirical Data, SIAM Rev. 51, 661–703, 2009) instead of the statistical error σ of the b-value and verified its effectiveness as a plausibility index of the power-law model. Furthermore, we also verified the effectiveness of K–S statistics as a goodness-of-fit test in estimating the crucial parameter \(M_{\text{c}}\) of the power-law model.  相似文献   

16.
Spatiotemporal mapping the minimum magnitude of completeness Mc and b-value of the Gutenberg–Richter law is conducted for the earthquake catalog data of Greece. The data were recorded by the seismic network of the Institute of Geodynamics of the National Observatory of Athens (GINOA) in 1970–2010 and by the Hellenic Unified Seismic Network (HUSN) in 2011–2014. It is shown that with the beginning of the measurements at HUSN, the number of the recorded events more than quintupled. The magnitude of completeness Mc of the earthquake catalog for 1970–2010 varies within 2.7 to 3.5, whereas starting from April 2011 it decreases to 1.5–1.8 in the central part of the region and fluctuates around the average of 2.0 in the study region overall. The magnitude of completeness Mc and b-value for the catalogs of the earthquakes recorded by the old (GINOA) and new (HUSN) seismic networks are compared. It is hypothesized that the magnitude of completeness Mc may affect the b-value estimates. The spatial distribution of the b-value determined from the HUSN catalog data generally agrees with the main geotectonic features of the studied territory. It is shown that the b-value is below 1 in the zones of compression and is larger than or equal to 1 in the zones dominated by extension. The established depth dependence of the b-value is pretty much consistent with the hypothesis of a brittle–ductile transition zone existing in the Earth’s crust. It is assumed that the source depth of a strong earthquake can probably be estimated from the depth distribution of the b-value, which can be used for seismic hazard assessment.  相似文献   

17.
Induced seismicity in geothermal projects is observed to continue after shut-in of the fluid injection. Recent experiments show that the largest events tend to occur after the termination of injection. We use a probabilistic approach based on Omori??s law and the Gutenberg?CRichter magnitude?Cfrequency distribution to demonstrate that the probability of exceeding a certain maximum magnitude still increases after shut-in. This increase is governed by the exponent of Omori??s law q and the Gutenberg?CRichter b value. For a reduced b value in the post-injection phase, the probability of occurrence directly after shut-in can be even higher than the corresponding probability for an ongoing injection. For the reference case of q?=?2 and a 10% probability at shut-in time t S to exceed a given maximum magnitude, we obtain an increase to 14.6% for t?=?2t S at a constant Gutenberg?CRichter b value after shut-in. A reduction of the b value by one quarter leads to a probability of 20.5%. If we consider a constant probability level of occurrence for an event larger than a given magnitude at shut-in time, this maximum magnitude increases by 0.12?units for t?=?2t S (0.26?units for a reduced b value). For the Soultz-sous-Forêts (France) injection experiment in 2000, recent studies reveal q?=?9.5 and a b value reduction by 14%. A magnitude 2.3 event 9?h after shut-in falls in the phase with a probability higher than for the continued injection. The probability of exceeding the magnitude of this post-injection event is determined to 97.1%.  相似文献   

18.
The Reviewed Event Bulletin (REB) of the International Data Center (IDC) has been used in order to investigate the seismicity of the Northwest Himalaya and its neighboring region for the time period June 1999 to March 2015 within the geographical coordinates 25–40° N latitude and 65–85° E longitude. We have used a very precisely located earthquake dataset recorded by the International Monitoring System (IMS) Network containing 7,583 events with body wave magnitudes from 2.5 to 6.3. The study area has been subdivided into six regions based on the Flinn-Engdahl (F-E) seismic and geographical regionalization scheme, which was used as the region classifications of the International Data Center catalog. The examined region includes NW India, Pakistan, Nepal, Xizang, Kashmir, and Hindukush. For each region, Magnitudes of completeness (Mc) and Gutenberg-Richter (GR) recurrence parameters (a and b values) have been estimated. The Gutenberg-Richter analysis is preceded by an overview of the seismotectonics of the study area. The obtained Mc values vary from 3.5 to 3.9. The lower value of Mc was found mainly in Xizang region whereas the higher Mc threshold is evident in Pakistan region. However, the b values vary from 1.19 to 1.48. The lowest b value is recorded in Xizang region, which is mostly related to the Main Karakoram Thrust (MKT) fault, whereas the highest b values are recorded in NW India and Kashmir regions, which are mostly related to the Main Frontal Thrust (MFT) fault. The REB for the selected period has been compared to the most renowned bulletin of global seismicity, namely that issued by the National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS). A study of 4,821 events recorded by USGS in the study region indicates that about 36 % of seismic events were missed and the catalog is considered as complete for events with magnitudes ≥4.0. However, both a and b values are obviously higher than those of IMS catalog. The a and b parameters in the Gutenberg-Richter magnitude–frequency relationship have been utilized to forecast the probability of future earthquakes of different magnitudes and returned periods (recurrence intervals).  相似文献   

19.
Earthquakes began to occur in Koyna region (India) soon after the filling of Koyna Dam in 1962. In the present study, three datasets 1964–1993, 1993–1995, and 1996–1997 are analyzed to study the b-value and fractal dimension. The b-value is calculated using the Gutenberg–Richter relationship and fractal dimension D corr. using correlation integral method. The estimated b-value and D corr. of this region before 1993 are found to be in good agreement with previously reported studies. In the subsequent years after 1995, the b-value shows an increase. The estimated b-values of this region are found within the limits of global average. Also, the pattern of spatial clustering of earthquakes show increase in clustering and migration along the three zones called North-East Zone, South-East Zone (SEZ), and Warna Seismic Zone. The earthquake events having depth ≤5 km are largely confined to SEZ. After 1993, the D corr. shows decrease, implying that earthquake activity gets clustered. This seismic clustering could be helpful for earthquake forecasting.  相似文献   

20.
松原市扶余北隐伏活动断裂地震潜势研究   总被引:7,自引:0,他引:7       下载免费PDF全文
扶余肇东断裂带是松辽盆地中一条重要的隐伏发震断裂带,2006年和2014年在此断裂带上发生了多次近6级地震,地震活动主要集中在断裂的东北段和查干花段。在2012—2014年的松原市活断层探测工作中,探明扶余肇东断裂带东北段经过松原市区,该段呈近EW向,具有明显的分段性和独立性,将其命名为扶余北断裂。通过三维物探资料和浅层人工探测,确定了扶余北断裂的空间展布和剖面特征,并利用联排钻孔探测和光释光测年技术,确定该断裂存在晚更新世以来的活动;利用石油物探资料获得的基岩面破裂规模,对扶余北断裂的地震潜势进行了估计,并进行了概率性地震危险性研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号