首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.

Results of reducing and selecting data from the Ratan Zenith Field (RZF) are presented. A deep survey in the region 0h ≤ R.A. ≤ 24h, 40.5° ≤ DEC ≤ 42.5° carried out on the RATAN-600 radio telescope was used. Within +2′ of the center of the survey region, 448 objects were detected, 69 of them with ultra-steep spectra (USS). The SDSS digital optical survey (DR12), NVSS radio maps, and the FIRST catalogs have been used to cross-identify 208 radio sources from the RZF catalog, obtained as part of the “Genetic Code of the Universe” project. The characteristics of these objects are studied, and the distribution of the SDSS galaxies in a two-color diagram is obtained. Photometric redshifts and radio luminosities at 3940 and 1400 MHz are determined for 27 objects with spectral indices α < −1.1 (Sνα) for which magnitudes in various filters are presented in the SDSS. In the sample of USS objects, 12 galaxies have redshifts z < 0.5, are detected at wavelength λ = 7.6 cm, and have relatively high radio luminosities (type FR II or intermediate type FR I–FR II). Only one radio galaxy proved to be a rare nearby galaxy with relatively low radio luminosity L1400 MHz = 1.51 × 1024 W/Hz (type FR I). Two objects are candidate GHz-Peaked Spectrum objects.

  相似文献   

2.
A cross-identification of objects in the low-frequency (365 MHz) Texas radio catalog and in IRAS catalogs at four infrared wavelengths has yielded a list of 715 objects for further studies. Objects with steep spectra for which the difference in the centers of gravity of the radio and infrared sources was less than 3″ were selected from this list. Seventeen of the objects have been observed at six wavelengths using the RATAN-600 radio telescope. Spectra of nine objects from the initial list for which there were candidate optical counterparts were obtained using the 2.1-m telescope of the INAOE. The results of these observations are discussed. The presence of steep spectral indices for the radio sources is confirmed. The possible optical counterparts include interacting galaxies, an infrared galaxy, two emission-line galaxies, and a candidate BL Lac object. Optical images of the optical counterparts are presented together with radio and optical spectra.  相似文献   

3.
The results of simultaneous multifrequency observations of giant radio pulses from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses detected at 111 MHz, 21 were identified with counterparts observed simultaneously at 600 MHz. The spectral indices for the power-law frequency dependence of the giant-pulse energies are from ?3.1 to ?1.6. The mean spectral index is ?2.7 ± 0.1 and is the same for both frequency combinations (600–111 MHz and 600–23 MHz). The large scatter in the spectral indices of the individual pulses and the large number of unidentified giant pulses suggest that the spectra of the individual giant pulses do not actually follow a simple power law. The observed shapes of the giant pulses at all three frequencies are determined by scattering on interstellar plasma inhomogeneities. The scatter-broadening of the pulses and its frequency dependence were determined as τ sc = 20(ν/100)?3.5±0.1 ms, where frequency ν is in MHz.  相似文献   

4.
The properties of giant radio sources (GRS’s) are considered with the aim of identifying conditions contributing to their formation, using data from the literature, the Sloan Digital Sky Survey (SDSS), and the APM catalog. The optical and radio properties of normal-size radio sources, (≤1 Mpc), are compared. The following conclusions are reached. (1) The fraction of objects with broad emission lines among GRS’s with high-excitation spectra is the same as for isotropic samples of radio sources; in the framework of the “unified scheme,” this testifies to an isotropic distribution of angles between the radio jets of GRS’s and the line of sight, i.e., GRS’s do not represent a population of objects whose radio jets are in the plane of the sky. (2) Giant radio sources do not differ from normal radio sources in the distributions of various asymmetry parameters for their extended radio components; in the unified scheme, the similarity of the asymmetry distributions for giant radio galaxies and giant radio quasars suggests that the origin of the asymmetry of their extended radio components is inhomogeneity of the external conditions. (3) The observed powers of the radio jets of giant and normal radio sources do not differ, making it unlikely that the large sizes of the GRS’s are due to this factor. (4) The richness and character of the environments of giant and normal radio sources do not differ: giant host galaxies are found in both isolated fields and in clusters of up to Abell class 1 in richness. This argues against the idea that a low density of the environment is the only origin of GRS’s. (5) The relatively large fraction of radio sources with two pairs of extended radio components (so-called double-double radio sources) among GRS’s testifies that the lifetimes of GRS’s are approximately an order of magnitude longer than those of normal radio sources.Given the equal spatial densities of nearby (z < 0.1) GRS’s and FR II radio sources with powers P 1.4 MHz > 1025 W/Hz, this indicates that ∼10% of FR II radio sources have lifetimes an order of magnitude longer, and evolve into GRS’s. (6) The small (∼0.1) ratio of the number of known GRS’s to the number of normal FR II radio sources, together with the observed spatial density of GRS’s at z ∼ 0.6, which is an order of magnitude lower than the predicted value, suggests that a considerable number of GRS’s were missed by surveys at z > 0.1, possibly due to observational selection effects because of their relatively low radio powers and radio surface brightnesses. (7) The absence of “double-double” giant quasars suggests that these objects have a shorter activity time scale than GRS’s. In an evolutionary scenario that is an alternative to the unified scheme uniting “radio loud” quasars and radio galaxies, radio quasars evolve with time into radio galaxies, and the observed relative number of radio quasars among the GRS’s (∼10%) can be interpreted as reflecting the existence of a long-lived population of “radio loud” quasars comprising ∼10% of all radio quasars, with such a population of long-lived radio quasars being the parent population for giant radio galaxies.  相似文献   

5.
We present classifications, optical identifications, and radio spectra for 19 radio sources from three complete samples, with declinations 4°–6° (B1950, S 3.9 GHz > 200 mJy), 10°–12°30′ (J2000, S 4.85 GHz > 200 mJy), and 74°–75° (J2000, S 4.85 GHz > 100 mJy). We also present corresponding information for the radio source J0527+0331. The right ascensions are 0–24h and the Galactic latitudes |b| > 15° for all the samples. Our observations were obtained with the 6 m telescope from the Special Astrophysical Observatory in the range 4000–9000 Å or 4000–7500 Å and the RATAN-600 radio telescope at frequencies in the range 0.97–21.7 GHz. We obtained flux densities for the radio sources and optical spectra for their optical counterparts. Nine objects were classified as quasars with redshifts from z = 1.029 to 3.212; nine objects are emission-line galaxies with redshifts from 0.172 to 0.546, and one is a galaxy with burstlike star formation at z = 0.156, and one is a BL Lac object with z = 0.509. The spectra of five radio sources were decomposed into extended and compact components. The radio source J0527+0331, identified with a BL Lac object, displays significant variations of time scales from several days to several years. Data on flux variations are presented for 11 radio sources, as well as their spectra at several epochs.  相似文献   

6.
A search for giant radio sources has been carried out using the PC102 catalog, which was compiled from a survey of the northern sky at 102.5 MHz. 117 extended sources were detected in an area with right ascensions 0h?4h and declinations from ?17? to +82?. Half of these sources have linear sizes in the plane of the sky of more than 500 kpc. A catalog of giant radio sources that is complete for radio sources with redshifts less than 0.2 has been compiled.  相似文献   

7.
Results of studies of bright radio sources in the constellation Cetus are presented. More than 50% of the sources have radio spectral indices steeper than 0.9. Optical identifications have been determined for 35 sources. A large fraction of the radio sources are identified with weak blue galaxies. Given their spectral indices, it is likely that these objects have redshifts z=0.4–1.0. More than 20% of the steep-spectrum sources do not have optical identifications and appear to be weak galaxies with z>2.  相似文献   

8.
BV RI data are presented for the majority of steep-spectrum objects in the RC catalog with m R <23.5m. Previously developed programs are applied to these data to estimate the redshifts and ages of the stellar systems of the host galaxies. Applying this program to the color data (BV RI JHK) for distant radio galaxies with spectroscopic redshifts indicates that this approach provides accurate estimates of the redshifts of such radio galaxies, close to those obtained using field galaxies (~20%). The age estimates are much less trustworthy, but a lower limit to the ages of objects that are not very distant (z<1.5) can be determined with certainty. We have identi fied several galaxies whose formal ages exceed the age of the Universe at the corresponding z in simple Cold Dark Matter models for the Universe. The possibility of using such objects to elucidate the role of “dark energy” is discussed. This paradox disappears in models with cosmological constants (Λ terms) equal to 0.6–0.8.  相似文献   

9.
We present the results of our observations of compact extragalactic radio sources near the north celestial pole (+75° ≤ δ ≤ +88°) obtained on the RATAN-600 radio telescope. Our sample consists of 51 radio sources with spectra that are either flat or inverted (growing toward shorter wavelengths) and with flux densities at 1.4 GHz S ν ≥ 200 mJy. We observed the sources at 1–21.7 GHz. Multi-frequency instantaneous spectra are presented for 1999–2007. We observed 33 of our sample source daily for 30 days in August 2007. As a result, we revealed 15 objects exhibiting rapid variations on time scales of a day. The multi-frequency instantaneous spectra of these sources indicate that radio flux variations on one-day timescales are characteristic of objects of various spectral types. More than half the sources exhibiting rapid variations demonstrate a growth in the variability amplitude with increasing frequency. For some of the objects, the variability amplitude is virtually independent of frequency.  相似文献   

10.
We study a compact group of 18 galaxies in the cluster A1367 with redshifts z = 0.0208–0.025. The group’s center of activity in the radio is the galaxy NGC 3862, whose radio flux is an order of magnitude stronger than for the other members of the group. We present coordinates derived from the Palomar plate archive together with recessional velocities, and analyze other characteristics of the group’s galaxies. The results of 1400 MHz observations of NGC 3862 with the RATAN-600 radio telescope are presented. These observations indicate that the galaxy’s radio emission is variable.  相似文献   

11.
We present classifications, optical identifications, and radio spectra for eight radio sources from three flux-density-complete samples in the following declination ranges: 4°–6° (B1950), S 3.9 > 200 mJy; 10°–12°30′ (J2000), S 4.85 > 200 mJy; 74°?75° (J2000), S 4.85 > 100 mJy. For all these samples, the right ascensions are 0h–24h and the Galactic latitudes, |b| > 15°. Our optical observations at 4000–7500 ° were made with the 6-m telescope of the Special Astrophysical Observatory; we also observed at 0.97–21.7 GHz with the RATAN-600 radio telescope of the Special Astrophysical Observatory. We classify four of the objects as quasars and four as galaxies. Five of the radio sources have power-law spectra at 0.97–21.7 GHz, while two objects have flat spectra. The quasar J2358+0430 virtually did not vary during 23 years.  相似文献   

12.
A phenomenological model for the evolution of classical radio galaxies such as Cygnus A is presented. An activity cycle of the host galaxy in the radio begins with the birth of radio jets, which correspond to shocks on scales ~1 pc (the radio galaxy B0108+388). In the following stage of the evolution, the radio emission comes predominantly from formations on scales of 10–100 pc, whose physical parameters are close to those of the hot spots of Cygnus A (this corresponds to GHz-peaked spectrum radio sources). Further, the hot spots create radio lobes on scales of 103–104 pc (compact steep-spectrum radio sources). The fully formed radio galaxies have radio jets, hot spots, and giant radio lobes; the direction of the jets can vary in a discrete steps with time, creating new hot spots and inflating the radio lobes (as in Cygnus A). In the final stage of the evolutionary cycle, first the radio jets disappear, then the hot spots, and finally the radio lobes (similar to the giant radio galaxies DA 240 and 3C 236). A large fraction of radio galaxies with repeating activity cycles is observed. The close connection between Cygnus A-type radio galaxies and optical quasars is noted, as well as similarity in the cosmological evolution of powerful radio galaxies and optical quasars.  相似文献   

13.
Published data from long-term observations of a strip of sky at declination ?? ?? 5° carried out at 7.6 cm on the RATAN-600 radio telescope are used to estimate some statistical properties of radio sources. Limits on the sensitivity of the survey due to noise imposed by background sources, which dominates the radiometer sensitivity, are refined. The vast majority of noise due to background sources is associated with known radio sources (for example, from the NVSS with a detection threshold of 2.3 mJy) with normal steep spectra (?? = 0.7?C0.8, S ?? ?? ??? ), which have also been detected in new deep surveys at decimeter wavelengths. When all such objects are removed from the observational data, this leaves another noise component that is observed to be roughly identical in independent groups of observations. We suggest this represents a new population of radio sources that are not present in known catalogs at the 0.6 mJy level at 7.6 cm. The studied redshift dependence of the number of steep-spectrum objects shows that the sensitivity of our survey is sufficient to detect powerful FRII radio sources at any redshift, right to the epoch of formation of the first galaxies. The inferred new population is most likely associated with low-luminosity objects at redshifts z < 1. In spite of the appearance of new means of carrying out direct studies of distant galaxies, searches for objects with very high redshifts among steep and ultra-steep spectrum radio sources remains an effective method for studying the early Universe.  相似文献   

14.
A new method for distinguishing candidate giant radio galaxies is proposed and applied. The method is based on comparing the axes of the extended components of NVSS radio sources with separations exceeding 4′, described in a catalog of presumably independent objects. Objects detected using the proposed algorithm include 16 new weak giant-radio-galaxy candidates, for which optical and radio identifications have been obtained using the CATS, NED, SDSS, and SkyView databases.  相似文献   

15.
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ~ 10?1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ~ 10?3 G, and the density of relativistic electrons is n e ~ 10?3 cm?3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, 〈E H 〉 = 〈E e 〉 ~ 10?7–10?6 erg cm?3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.  相似文献   

16.
We present optical identifications, classifications, and radio spectra for 19 radio sources from a complete sample in flux density with declinations 10°–12°30′ (J2000) obtained with the 6-m optical telescope (4000–9000 Å) and RATAN-600 radio telescope (0.97–21.7 GHz) of the Special Astrophysical Observatory. Twelve objects with redshifts from 0.573 to 2.694 have been classiffied as quasars, and two objects with featureless spectra as BL Lac objects. Four objects are emission-line radio galaxies with redshifts from 0.204 to 0.311 (one also displaying absorption lines), and one object is an absorption-line galaxy with a redshift of 0.214. Radio flux densities have been obtained at six frequencies for all the sources except for two extended objects. The radio spectra of five of the sources can be separated into extended and compact components. Three objects display substantial rapid (on time scales from several days to several weeks) and long-term variability of their flux densities.  相似文献   

17.
The results of spectroscopic observations of the host galaxies of objects in the RC catalog (the “Big Trio” program) obtained using the new SCORPIO spectrograph of the Special Astrophysical Observatory are presented. The spectroscopic redshifts of the objects are compared with their photometric color redshifts, and the errors in the latter are estimated. Based on BV RI observations obtained on the 6-m telescope of the SAO, the errors for the population of powerful radio galaxies are close to those found previously for radio quiet galaxies (about 10–20%). The detection of Ly α in the B filter in RC 1626+0448 is confirmed. This object is the second spectrally studied FR II radio source from the RC catalog to have a redshift z>2.5. Star formation in its host galaxy began at a redshift z>3.3. This first use of the new SCORPIO spectrograph demonstrates its promise for studies of very distant steep-spectrum radio galaxies brighter than 23m–24m in V.  相似文献   

18.
Observations of the RRAT pulsars J0627+16, J0628+09, J1819?1458, J1826?1419, J1839?01, J1840?1419, J1846?0257, J1848?12, J1850+15, J1854+0306, J1919+06, J1913+1330, J1919+17, J1946+24, and J2033+00 observed earlier on the 64-m Parkes telescope (Australia) and the 300-m Arecibo radio telescope (Puerto Rico) at 1400 MHz were conducted at 111 MHz on the LSA radio telescope of the Pushchino Radio Astronomy observatory in 2010–2012. A characteristic feature of these pulsars is their sporadic radio emission during rare active epochs and the absence of radio emission during long time intervals. No appreciable flare activity of these pulsars was detected in the Pushchino observations. However, processing the observations using the Fast Folding Algorithm taking into account known information about the pulsar dispersion measures and periods shows that, even during quiescent intervals, the majority of the studied pulsars generate weak radio pulses with a period corresponding to that of the radio emission of the sporadic pulses observed at active epochs. The flux of this radio emission does not exceed 100 mJy at the pulse peak, even at the low frequency of 111 MHz. This considerably hinders detection of the radio emission of RRAT pulsars at high frequencies, since the radio fluxes of RRAT pulsars decreases with increasing frequency.  相似文献   

19.
Results of timing measurements of the pulsar PSR B0329+54 obtained in 1968–2012 using the Big Scanning Antenna of the Pushchino Radio Astronomy Observatory (at 102 and 111 MHz), the DSS 13 and DSS 14 telescopes of the Jet Propulsion Laboratory (2388 MHz), and the 64 m telescope of the Kalyazin Radio Astronomy Observatory (610 MHz) are presented. The astrometric and rotational parameters of the pulsar are derived at a new epoch. Periodic variations in the barycentric timing residuals have been found, which can be explained by the presence of a planet orbiting the pulsar, with an orbital period P1 = 27.8 yr, mass m c sin i = 2M?, and orbital semi-major axis a = 10.26 AU. The results of this study do not confirm existence of a proposed second planet with orbital period P2 = 3 yr.  相似文献   

20.
Measurements of the flux densities of the extended components of seven giant radio galaxies obtained using the RATAN-600 radio telescope at wavelengths of 6.25 and 13 cm are presented. The spectra of components of these radio galaxies are constructed using these new RATAN-600 data together with data from the WENSS, NVSS, and GB6 surveys. The spectral indices in the studied frequency range are calculated, and the need for detailed estimates of the integrated contribution of such objects to the background emission is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号