首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Crystals of lead oxobromide Pb7O4(OH)4Br2 have been synthesized by hydrothermal method. The structure of the new compound has been studied with X-ray single-crystal diffraction analysis. The compound is monoclinic, space group C1121; unit-cell dimensions are a = 5.852(4), b = 13.452(7), c = 19.673(9) Å, γ = 90.04°, V = 1548.7(15) Å3. The structure has been solved by direct methods and refined to R 1 = 0.1138 for 1847 observed Pb7O4(OH)4Br2 unique reflections. The structure contains seven symmetrically independent bivalent Pb atoms. The coordination polyhedrons of Pb are strongly distorted due to stereochemical activity of unshared electron pair 6s 2. Oxygen atoms are tetrahedrally coordinated by four Pb2+ cations with the formation of oxocentered tetrahedrons OPb4. The compound is based on [O2Pb3]2+ double chains formed by OPb4 tetrahedrons. (OH)Pb2 dimers combine the [O2Pb3]2+ chains into 3D framework. Channels in the framework are parallel to [100] and are occupied by Br anions.  相似文献   

2.
Crystals of lead oxychloride Pb13O10Cl6 have been synthesized on the basis of high-temperature solid-state reactions. The Pb13O10Cl6 structure was studied using X-ray single-crystal diffraction analysis. The compound is monoclinic, and the space group is C2/c; the unit-cell dimensions are a = 16.1699(14), b = 7.0086(6), c = 23.578(2) Å, β = 97.75°, and V = 2647.6(4) Å3. The structure has been solved by direct methods and refined to R 1 = 0.0505 for 2671 observed unique reflections. The structure is a 3D framework consisting of OPb4 tetrahedrons. Chlorine atoms are located in the framework channels. The structure contains seven symmetrically independent Pb atoms, which are coordinated by 2 to 4 O2? and 2 to 4 Cl? anions. The synthesized compound is compared with other natural and synthetic lead oxyhalides.  相似文献   

3.
Single-crystal study of the structure (R = 0.0268) was performed for garyansellite from Rapid Creek, Yukon, Canada. The mineral is orthorhombic, Pbna, a = 9.44738(18), b = 9.85976(19), c = 8.14154(18) Å, V = 758.38(3) Å3, Z = 4. An idealized formula of garyansellite is Mg2Fe3+(PO4)2(OH) · 2H2O. Structurally the mineral is close to other members of the phosphoferrite–reddingite group. The structure contains layers of chains of M(2)O4(OH)(H2O) octahedra which share edges to form dimers and connected by common edges with isolated from each other M(1)O4(H2O)2 octahedra. The neighboring chains are connected to the layer through the common vertices of M(2) octahedra and octaahedral layers are linked through PO4 tetrahedra.  相似文献   

4.
The crystal structure of a new compound [Mg(H2O)4(SeO4)]2(H2O) (monoclinic, P2 1/a, a = 7.2549(12), b = 20.059(5), c = 10.3934(17) Å, β = 101.989(13), V = 1479.5(5) Å3) has been solved by direct methods and refined to R 1 = 0.059 for 2577 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure consists of [Mg(H2O)4(SeO4)]0 chains formed by alternating corner-sharing Mg octahedrons and (SeO4)2? tetrahedrons. O atoms of Mg octahedrons that are shared with selenate tetrahedrons are in a trans orientation. The heteropoly-hedral octahedral-tetrahedral chains are parallel to the c axis and undulate within the (010) plane. The adjacent chains are linked by hydrogen bonds involving H2O molecules not bound with M2+ cations.  相似文献   

5.
The crystal structure of a new compound, (H3O)[(UO2)(SeO4)(SeO2OH)] (monoclinic, P21/n, a = 8.6682(19), b = 10.6545(16), c = 9.846(2) Å, β = 97.881(17)°, V = 900.7(3) Å3), was solved by direct methods and refined to R 1 = 0.050. The structure contains two symmetrically different Se atoms. The Se1 site is coordinated by three O atoms as is characteristic of Se4+ cations. The Se2 site is coordinated by four O atoms and forms selenate anion SeO 4 2? . The structure is based on selenite-selenate sheets [(UO2)(SeO4)(SeO2OH)]? linked by the interlayer H3O? ions. The sheets are parallel to (101). The structure is compared to that of schmiederite, Pb2Cu2(SeO3)(SeO4)(OH)4.  相似文献   

6.
The crystal structure of a new compound Zn(SeO4)(H2O)2 (orthorhombic, Pbca, a = 9.0411(13), b = 10.246(2), c = 10.3318(15) Å, V = 957.1(3) Å3) has been solved by direct methods and refined to R 1 = 0.033 on the basis of 1076 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure contains one independent Zn2+ cation coordinated by two water molecules and four oxygen atoms of selenate group. The only independent (SeO4)2? tetrahedral oxoanion is tetradentate, sharing its corners with four adjacent [Zn2+O2(H2O4)]2+ octahedrons. The structure can be described as consisting of heteropolyhedral sheets parallel to the (001) plane and linked together into a three-dimensional network. The compound belongs to the variscite structure type and is the first structurally characterized selenate of this group.  相似文献   

7.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   

8.
A new potassium uranyl selenate compound K(UO2)(SeO4)(OH)(H2O) has been synthesized for the first time using the technique of evaporation from water solution. Its crystal structure has been solved by direct methods (monoclinic, P21/c,a = 8.0413(9) Å, b = 8.0362(9) Å, c = 11.6032(14) Å, β = 106.925(2)°, V = 717.34(14) Å3) and refined to R 1 = 0.0319 (wR 2 = 0.0824) for 1285 reflections with |F 0| > 4σ F . The structure consists of [(UO2(SeO4)(OH)(H2O)]? chains extending along axis b. In the chains, the uranyl pentagonal bipyramids are linked via bridged hydroxyl anions and tetrahedral oxoanions [SeO4]2?. Potassium ions are situated between these chains. No chains of that type have been observed in uranyl compounds earlier, but they had been detected in the structures of butlerite, parabutlerite, uklonskovite, fibroferrite, and a number of synthetic compounds.  相似文献   

9.
The crystal structure of a new compound, [(H5O2)(H3O)(H2O)][(UO2)(SeO4)2] (monoclinic, P21/n a = 8.3105(15), b = 11.0799(14), c = 13.227(2) Å, β = 103.880(13)°, V = 1182.4(3) Å3), has been solved by direct methods and refined to R 1 = 0.036. The structure is based on [(UO2)(SeO4)2]2? sheet complexes formed by corner-shared UO7 pentagonal bipyramids and SeO4 tetrahedrons. The sheets are parallel to the ( $ \bar 1 The crystal structure of a new compound, [(H5O2)(H3O)(H2O)][(UO2)(SeO4)2] (monoclinic, P21/n a = 8.3105(15), b = 11.0799(14), c = 13.227(2) ?, β = 103.880(13)°, V = 1182.4(3) ?3), has been solved by direct methods and refined to R 1 = 0.036. The structure is based on [(UO2)(SeO4)2]2− sheet complexes formed by corner-shared UO7 pentagonal bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (01) plane. Oxonium ions and water molecules forming [(H3O)·(H2O)·(H5O2)]2+ complexes are interlayer. Among minerals, the existence of (H5O2)+ has been unambiguously confirmed only in rhomboclase, (H5O2)+[Fe2(SO4)2(H2O)2]. Original Russian Text ? S.V. Krivovichev, 2008, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2008, No. 2, pp. 123–130.  相似文献   

10.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

11.
Plumboselite, ideally Pb3O2(SeO3), is a new selenite (IMA2010?C028) from the Tsumeb mine, Namibia. It occurs as fibres on clausthalite and is also associated with smithsonite, mimetite and vaterite. Plumboselite occurs in subparallel to divergent clusters of thin, flattened, colourless fibres up to 0.3?mm in length, but not exceeding 5???m in width and 2???m in thickness. The fibres are elongated parallel to [001] and flattened on {010}, with {010} the only form observed. The crystals have a dull to adamantine lustre and a white streak. The tenacity is brittle and the Mohs hardness is estimated to be between 2 and 3. Plumboselite crystals are optically biaxial with parallel extinction and are length fast in all orientations. The Gladstone-Dale relationship predicts n av?=?2.115. The high indices of refraction and small crystal size prevented the determination of other optical properties. The calculated density is 7.814?g/cm3. The empirical formula (based on 5 O atoms) is Pb2.92Ca0.01Se1.03O5. Plumboselite is orthorhombic, space group Cmc21, a?=?10.5384(11), b?=?10.7452(13), c?=?5.7577(7) ?, V?=?651.98(12) ?3 and Z?=?4. The five strongest lines in the powder X-ray diffraction pattern are [d obs in ?/(I)/hkl]: 3.155/(100)/221; 1.956/(26)/042,402; 2.886/(22)/311,002; 1.713/(21)/223; 2.691/(17)/040. The crystal structure was solved from single-crystal X-ray diffraction data and refined to R 1?=?0.0371 on the basis of 200 unique reflections with F o?>?4??F. The structure is based on double [O2Pb3] chains of edge-sharing oxo-centered [OPb4] tetrahedra along c, between which are sited SeO3 triangles. The two independent Pb2+ atoms and the Se4+ atom have sterochemically active lone electron pairs.  相似文献   

12.
Single crystals of Li-aegirine LiFe3+Si2O6 were synthesized at 1573?K and 3?GPa, and a polycrystalline sample suitable for neutron diffraction was produced by ceramic sintering at 1223?K. LiFe3+Si2O6 is monoclinic, space group C2/c, a=9.6641(2)?Å, b= 8.6612(3)?Å, c=5.2924(2)?Å, β=110.12(1)° at 300?K as refined from powder neutron data. At 229?K Li-aegirine undergoes a phase transition from C2/c to P21 /c. This is indicated by strong discontinuities in the temperature variation of the lattice parameters, especially for the monoclinic angle β and by the appearance of Bragg reflections (hkl) with h+k≠2n. In the low-temperature form two non-equivalent Si-sites with 〈SiA–O〉=1.622?Å and 〈SiB–O〉=1.624?Å at 100?K are present. The bridging angles of the SiO4 tetrahedra O3–O3–O3 are 192.55(8)° and 160.02(9)° at 100?K in the two independent tetrahedral chains in space group P21 /c, whereas it is 180.83(9)° at 300?K in the high-temperature C2/c phase, i.e. the chains are nearly fully expanded. Upon the phase transition the Li-coordination changes from six to five. At 100?K four Li–O bond lengths lie within 2.072(4)–2.172(3)?Å, the fifth Li–O bond length is 2.356(4)?Å, whereas the Li–O3?A bond lengths amount to 2.796(4)?Å. From 57Fe Mössbauer spectroscopic measurements between 80 and 500?K the structural phase transition is characterized by a small discontinuity of the quadrupole splitting. Temperature-dependent neutron powder diffraction experiments show first occurrence of magnetic reflections at 16.5?K in good agreement with the point of inflection in the temperature-dependent magnetization of LiFe3+Si2O6. Distinct preordering phenomena can be observed up to 35?K. At the magnetic phase transition the unit cell parameters exhibit a pronounced magneto-striction of the lattice. Below T N Li-aegirine shows a collinear antiferromagnetic structure. From our neutron powder diffraction experiments we extract a collinear antiferromagnetic spin arrangement within the ac plane.  相似文献   

13.
The single-crystal of humboldtine [Fe2+(C2O4) · 2H2O] was first synthesized and the crystal structure has been refined. Single-crystal X-ray diffraction data were collected using an imaging-plate diffractometer system and graphite-monochromatized MoKα radiation. The crystal structure of humboldtine was refined to an agreement index (R1) of 3.22% calculated for 595 unique observed reflections. The mineral crystallizes in the monoclinic system, space group C2/c, with unit cell dimensions of a = 12.011 (11), b = 5.557 (5), c = 9.920 (9) Å, β = 128.53 (3)?, V = 518.0 (8) Å3, and Z = 4. In this crystal structure, the alternation of oxalate anions [(C2O4)2?] and Fe2+ ions forms one-dimensional chain structure parallel to [010]; water molecules (H2O)0 create hydrogen bonds to link the chains, where (H2O)0 is essentially part of the crystal structure. The water molecules with the two lone electron pairs (LEPs) on their oxygen atom are tied obliquely to the chains, because the one lone electron pair is considered to participate in the chemical bonds with Fe2+ ions. Humboldtine including hydrogen bonds is isotypic with lindbergite [Mn2+(C2O4) · 2H2O]. The donor–acceptor separations of the hydrogen bonds in humboldtine are slightly shorter than those in lindbergite, which suggests that the hydrogen bonds in the former are stronger than those in the latter. The infrared and Raman spectra of single-crystals of humboldtine and lindbergite confirmed the differences in hydrogen-bond geometry. In addition, Fe2+–O stretching band of humboldtine was split and broadened in the observed Raman spectrum, owing to the Jahn–Teller effect of Fe2+ ion. These interpretations were also discussed in terms of bond-valence theory.  相似文献   

14.
Cu-poor meneghinite from La Lauzière Massif (Savoy, France) has the composition (electron microprobe) (in wt%): Pb 59.50, Sb 20.33, Bi 1.19, Cu 0.87, Ag 0.05, Fe 0.03, S 17.62, Se 0.05, Total 99.64. Its crystal structure (X-ray on a single crystal) was solved with R1=0.0506, wR2=0.1026, with an orthorhombic symmetry, space group Pnma, and a=24.080(5) Å, b=4.1276(8) Å, c=11.369(2) Å, V=1130.0(4) Å3, Z=4. Relatively to the model of Euler and Hellner (1960), this structure shows a significantly lower site occupancy factor for the tetrahedral Cu site (0.146 against 0.25). Among the five other metallic sites, Bi appears in the one with predominant Sb. Developed structural formula: Cu0.15Pb2(Pb0.53Sb0.47)(Pb0.46Sb0.54)(Sb0.75Pb0.19Bi0.06)S6; the reduced one: Cu0.58Pb12.72(Sb7.04Bi0.24)S24. The formation of such a Cu-poor variety seems to be related to specific paragenetic conditions (absence of coexisting galena), or to crystallochemical constraints (minor Bi). To cite this article: Y. Moëlo et al., C. R. Geoscience 334 (2002) 529–536.  相似文献   

15.
A new Cu-rich variety of lyonsite has been found from fumarolic sublimates of the Tolbachik volcano (Kamchatka, Russia). The empirical formula is Cu4.33Fe 2.37 3+ Ti0.26Al0.26Zn0.07(V5.85As0.07Mo0.07P0.01S0.01)O24. The crystal structure was studied on single crystal using synchrotron radiation, R = 0.0514. The mineral is orthorhombic, Pnma, a = 5.1736(7), b =10.8929(12), c = 18.220(2) Å, V = 1026.8(2) Å3, and Z = 2. The structural formula is (Cu0.6Ti0.3Al0.3Fe 0.2 3+ 0.6)Σ2Cu2(Fe 2.2 3+ Cu1.8)Σ4(V5.8As0.1Mo0.1)Σ6O24. It is proposed to recast the simplified formula of lyonsite as Cu3+x (Fe 4?2x 3+ Cu2x )(VO4)6, where 0 ≤ x ≤ 1.  相似文献   

16.
The crystal structure of bonshtedtite, Na3Fe(PO4)(CO3) (monoclinic, P21/m, a = 5.137(4), b = 6.644(4), c = 8.908(6) Å, β = 90.554(14)°, V = 304.0(4) Å3, Z = 2) has been refined to R 1 = 0.041 on the basis of 1314 unique reflections. The structure is similar to that of other minerals of the bradleyite group. It is based on the [Fe(PO4)(CO3)]3? layers oriented parallel to (001). The layers are formed by corner-sharing PO4 tetrahedra and FeO4(CO3) complexes, where FeO6 tetrahedra and CO3 triangles are edge-shared. The topology of the octa-tetrahedral layer in bonshtedtite is similar to that of the autunite-group minerals, but it differs from the latter in terms of local topological properties.  相似文献   

17.
The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, a rare copper selenite chloride from volcanic fumaroles of the Great fissure Tolbachik eruption (Kamchatka peninsula, Russia), has been solved by direct methods and refined to R 1?=?0.044 on the basis of 2720 unique observed reflections. The mineral is orthorhombic, Pnma, a?=?17.769(7), b?=?6.448(3), c?=?10.522(4) Å, V?=?1205.6(8) Å3, Z?=?4. The The CuOmCln coordination polyhedra share edges to form tetramers that have 'additional' O1 and O2 atoms as centers. The O1Cu4 and O2Cu4 tetrahedra share common Cu atoms to form [O2Cu5]6+ sheets. The SeO3 groups and Cl atoms are adjacent to the [O2Cu5]6+ sheets to form complex layers parallel to (100). The Na+ cations are located in between the layers. A review of mixed-ligand CuOmCln coordination polyhedra in minerals and inorganic compounds is given. There are in total 26 stereochemically different mixed-ligand Cu-O-Cl coordinations.  相似文献   

18.
The crystal structures of two new compounds (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 (1, orthorhombic, Pnma, a = 14.0328(18), b = 11.6412(13), c = 8.2146(13) Å, V = 134.9(3) Å3) and (H3O)2[(UO2)(SeO4)2(H2O)](H2O) (2, monoclinic, P21/c, a = 7.8670(12), b = 7.5357(7), c = 21.386(3) Å, β = 101.484(12)°, V = 1242.5(3) Å3) have been solved by direct methods and refined to R 1 = 0.076 and 0.080, respectively. The structures of both compounds contain sheet complexes [(UO2)(SeO4)2]2? formed by cornershared [(UO2)O4(H2O)] bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (100) plane in structure 1 and to (?102) in structure 2. The [(UO2)(SeO4)2(H2O)]2? layers are linked by hydrogen bonds via interlayer groups H2O and H3O+. The sheet topologies in structures 1 and 2 are different and correspond to the topologies of octahedral and tetrahedral complexes in rhomboclase (H2O2)+[Fe(SO4)2(H2O)2] and goldichite K[Fe(SO4)2(H2O)2](H2O)2, respectively.  相似文献   

19.
The crystal structure of mangan-neptunite, a manganese analogue of neptunite, has been refined in two space groups (Cc and C2/c). The mineral is monoclinic, with the correct space group Cc; the unit-cell dimensions are: a = 16.4821(6), b = 12.5195(4), c = 10.0292(3) Å, β = 115.474(1)°, and V = 1868.31 Å3. The crystal structure has been refined to R 1 = 0.0307 (wR 2 = 0.0901) on the basis of 4892 observed reflections with |F hkl | ≥ 4σ|F hkl |. The most plausible acentric model is caused by the Ti- and (Fe, Mn, Mg)-ordering in the structure. Ti-octahedrons are strongly distorted and consist of short bond Ti-O (1.7 Å), one long bond (2.2 Å), and four equal bonds (2.0 Å). Fe-octahedrons are regularly shaped, with all Fe-O bonds being approximately identical.  相似文献   

20.
The Fe-rich Li-bearing magnesionigerite-6N6S occurs in the Xianghualing tin-polymetallic ore field, Linwu County, Hunan Province, Peoples Republic of China. It was found near the outer contact zone of the Laizhiling granite body and in the Middle-Upper Devonian carbonate rocks of Qiziqiao Formation. The mineral formed during the skarn stage. Its empirical formula is Sn1.81Li0.67(Fe1.43Zn1.19 Mn0.41)Σ3.03(Al14.89Mg1.46 Ti0.11Si0.01)Σ16.47O30(OH)2. The structure for magnesionigerite-6N6S was solved and refined in space group R-3?m, with a?=?5.7144(8), c?=?55.446(11) Å, V?=?1568.0(4) Å3, to R1?=?0.0528. Based on the structural refinement of single crystal diffraction data the formula of magnesionigerite-6N6S is Sn1.80Li0.97(Fe1.89Zn0.91) Σ2.80 (Al14.60Mg1.63 Ti0.20)Σ16.43O30(OH)2 with Z?=?3. Fe-rich Li-bearing magnesionigerite-6N6S contains 0.74 wt.% Li2O. The idealized charge-balanced composition of magnesionigerite-6N6S may be expressed by bivalent and trivalent cations: (Mg2+)4(Al3+)18O30(OH)2. The simplified general formula for the 6N6S polysomes in the nigerite and högbomite groups can be given as A x B18-x O30(OH)2, x?=?~4, where A?=?Mg2+, Fe2+, Zn2+; B?=?Al3+, Sn4+, Ti4+, Li+, □.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号