首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is believed that η Carinae is actually a massive binary system, with the wind–wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of η Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face η Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of η Carinae forms an angle of  29°± 4°  with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about  5°  and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.  相似文献   

2.
Spatially resolved, broad Hα line profiles from both the luminous blue variable star ε Carinae (ε Car) and the surrounding filamentary Car II ('Keyhole') nebula, where they have been scattered and reflected by dust, have been observed periodically from 1985 to 1997. The Hα line profiles from ε Car in this 12-yr period show some, albeit not dramatic, changes. The sharp and deep P Cygni-type absorption feature that was observed first in 1985 in the broad, scattered/reflected profiles from the surrounding Keyhole nebula is not present in any of the direct ε Car profiles. This distinctive feature is now shown to be spatially variable over the Keyhole nebula and most prominent along the direction of the axis of the bipolar Homunculus nebula at PA 132°. No evidence of any temporal variability of this sharp feature has been found in 12 yr of monitoring, even from the most well-defined scattering/reflecting cloud along PA 132°.
It is concluded that a 46°-wide cone of light from ε Car is relatively unobscured along the axis of the Homunculus nebula and that this must be the consequence of a dense torus close to the star.  相似文献   

3.
In this paper, we compute theoretically the flux density and the spectral index of the free–free radiation at radio wavelengths produced by shocks in the inner bipolar emission nebula called the little Homunculus around the star η Carinae. The little Homunculus is believed to have formed as a result of the minor eruption suffered by the star in the 1890s. In our model, we consider a simplified interacting stellar wind scenario where the post-outburst η Carinae wind collides with the eruptive outflow (both assumed to be bipolar with conical symmetry). As a result of the interaction, shock-wave structures are formed and generate the development of two polar caps moving in opposite directions. After ∼100 yr (i.e. at present times), the polar caps are located ±2.3 arcsec on each side of the star, and remain embedded within the larger bipolar Homunculus that extends from −8 to +8 arcsec along its major axis. Using observational estimates of the characteristics of the eruptive event of the 1890s, and of the ambient wind powered by η Carinae in the decades after the eruption ended, we study the evolution of the polar caps formed as a result of a sudden increase in the wind velocity and an instantaneous drop in the mass-loss rate (just after the eruption) at the injection radius. We found that the little Homunculus emits continuum radiation that can be detected at radio frequencies and that indeed represents an important contribution to the total free–free emission detected from the η Carinae nebula.  相似文献   

4.
We present polarimetric and spectroscopic observations of the ROSAT source RX J1141.3−6410, recently identified as a polar. The detection of circular polarization variations, with an amplitude of 10 per cent, over a 3.16-h period confirms that the system is a polar (AM Herculis star). Supporting evidence comes from the nature of the emission lines and their radial velocity variability. In addition, we observe continuum slope changes in the far-red spectral region (∼6000–8200 Å), indicative of phase dependent cyclotron emission. Polarimetric modelling at two wavelengths establishes RX J1141.3−6410 as a single-pole system, with i ∼ β ∼70°. The accretion region is extended in magnetic longitude, and is totally self-occulted for ∼25 per cent of the orbit. The radial velocity curves derived from the emission lines show a phasing with maximum blueshift occurring with Δ φ ∼0.05 of maximum intensity and circular polarisation. In addition, the broader component of the lines exhibit a substantial radial velocity phase shift with respect to the narrower component, in the sense that the broad component preceeds the narrow. This can be readily understood if the narrower component is principally a result of orbital motion of the stream material and the broad component mainly a result of streaming motion near the coupling region. The phasing of the Ca  ii near-infrared line radial velocities also supports this general picture.  相似文献   

5.
Theoretical X-ray line profiles from colliding wind binaries   总被引:1,自引:0,他引:1  
We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths  (HWHM ∼ 0.1 v )  and definite blueshifts or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader  (HWHM ∼ v )  , flat-topped and unshifted. Local absorption can have a major effect on the observed profiles – in systems with mass-loss rates of a few times  10−6 M yr−1  the lower energy lines  ( E  ≲ 1 keV)  are particularly affected. This generally results in blueward-skewed profiles, especially when the system is viewed through the dense wind of the primary. The orbital variation of the linewidths and shifts is reduced in a low-inclination binary. The extreme case is a binary with   i = 0°  , for which we would expect no line profile variation.  相似文献   

6.
Continuum-subtracted dereddened images in the light of several atomic lines show the presence of an extended bipolar nebula surrounding η Carinae with size ∼100×45 arcsec2 (1.3×0.5 pc2). This feature is best delineated in [O  iii ] 5007. The geometrical disposition and mass of the shell suggest that it was formed by mass ejections from η Carinae. The dynamic age of the nebula is ∼13 000/ V 7 yr, where V 7 is the mean expansion velocity in 100 km s−1, and its mass is between 5 and 10 M. The nebula is photoionized and composed of unprocessed material. The major axes of the nebula and of the Homunculus are nearly perpendicular. We also report the discovery of elongated emission knots prominent in [N  ii ] located 64 to 100 arcsec away from η Carinae, which implies that they were ejected either centuries ago or at a more recent date but with extremely large velocities.  相似文献   

7.
High-resolution spectroscopic observations around the Hα line of the binary star QX Cas covering the whole orbital period are presented. Our radial velocity solution, the first ever determined, requires an eccentric orbit with the following orbital parameters: eccentricity,   e = 0.22 ± 0.01  ; longitude of periastron,  ω= 45°± 5°  ; semi-amplitudes of the radial velocity curves of the primary and secondary stars,   K 1 sin  i = 125.8 ± 0.9 km s−1  and   K 2 sin  i = 144.8 ± 1.1 km s−1  ; gamma velocity,   V 0= 65.1 ± 0.5 km s−1  ; and mass ratio,   q = 0.869 ± 0.013  . The corresponding lower limits of the masses of the components and their separation are         , and   a sin  i = 31.34 ± 0.48 R  .  相似文献   

8.
We present 3D simulations of rotationally induced line variability arising from complex circumstellar environment of classical T Tauri stars (CTTS) using the results of the 3D magnetohydrodynamics (MHD) simulations of Romanova et al., who considered accretion on to a CTTS with a misaligned dipole magnetic axis with respect to the rotational axis. The density, velocity and temperature structures of the MHD simulations are mapped on to the radiative transfer grid, and corresponding line source function and the observed profiles of neutral hydrogen lines (Hβ, Paβ and Brγ) are computed using the Sobolev escape probability method. We study the dependency of line variability on inclination angles ( i ) and magnetic axis misalignment angles (Θ). We find the line profiles are relatively insensitive to the details of the temperature structure of accretion funnels, but are influenced more by the mean temperature of the flow and its geometry. By comparing our models with the Paβ profiles of 42 CTTS observed by Folha & Emerson, we find that models with a smaller misaligngment angle  (Θ < ∼15°)  are more consistent with the observations which show that majority of Paβ are rather symmetric around the line centre. For a high inclination system with a small dipole misalignment angle  (Θ≈ 15°)  , only one accretion funnel (on the upper hemisphere) is visible to an observer at any given rotational phase. This can cause an anticorrelation of the line equivalent to the width in the blue wing  ( v < 0)  and that in the red wing  ( v > 0)  over half of a rotational period, and a positive correlation over the other half. We find a good overall agreement of the line variability behaviour predicted by our model and those from observations.  相似文献   

9.
This work presents the first integral field spectroscopy of the Homunculus nebula around η Carinae in the near-infrared spectral region ( J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and  6.0 × 1016  cm, respectively. We also mapped the blue-shifted component of He  i  λ10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc.
We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H  ii region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in η Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5  iii to O7  i . Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the 'Sr-filament' but they are obviously spatially separated, while the blue-shifted component of He  i λ10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.  相似文献   

10.
Towards an understanding of the Of?p star HD 191612: optical spectroscopy   总被引:1,自引:0,他引:1  
We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe–O8fp). The Balmer and He  i lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. He  ii absorptions and metal lines (including many selective emission lines but excluding He  ii λ4686 Å emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with   P orb= 1542 d, e = 0.45  . We conduct a model-atmosphere analysis of the spectrum, and find that the system is consistent with a ∼O8 giant with a ∼B1 main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying 'clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.  相似文献   

11.
We have used the RXTE and INTEGRAL satellites simultaneously to observe the high-mass X-ray binary (HMXB) IGR J19140+0951. The spectra obtained in the 3–80 keV range have allowed us to perform a precise spectral analysis of the system along its binary orbit. The spectral evolution confirms the supergiant nature of the companion star and the neutron star nature of the compact object. Using a simple stellar wind model to describe the evolution of the photoelectric absorption, we were able to restrict the orbital inclination angle in the range 38°–75°. This analysis leads to a wind mass-loss rate from the companion star of  ∼5 × 10−8 M yr−1  , consistent with an OB I spectral type. We have detected a soft excess in at least four observations, for the first time for this source. Such soft excesses have been reported in several HMXBs in the past. We discuss the possible origin of this excess, and suggest, based on its spectral properties and occurrences around the superior conjunction, that it may be explained as the reprocessing of the X-ray emission originating from the neutron star by the surrounding ionized gas.  相似文献   

12.
We report the results of a spectroscopic and polarimetric study of the massive, hydrogen-rich WN6h stars R144 (HD 38282 = BAT99-118 = Brey 89) and R145 (HDE 269928 = BAT99-119 = Brey 90) in the Large Magellanic Cloud. Both stars have been suspected to be binaries by previous studies (R144: Schnurr et al.; R145: Moffat). We have combined radial-velocity (RV) data from these two studies with previously unpublished polarimetric data. For R145, we were able to establish, for the first time, an orbital period of 158.8 d, along with the full set of orbital parameters, including the inclination angle i , which was found to be   i = 38°± 9°  . By applying a modified version of the shift-and-add method developed by Demers et al., we were able to isolate the spectral signature of the very faint line companion star. With the RV amplitudes of both components in R145, we were thus able to estimate their absolute masses. We find minimum masses   M WRsin3 i = 116 ± 33 M  and   M Osin3 i = 48 ± 20 M  for the WR and the O component, respectively. Thus, if the low-inclination angle were correct, resulting absolute masses of the components would be at least 300 and  125 M  , respectively. However, such high masses are not supported by brightness considerations when R145 is compared to systems with known very high masses such as NGC 3603-A1 or WR20a. An inclination angle close to  90°  would remedy the situation, but is excluded by the currently available data. More and better data are thus required to firmly establish the nature of this puzzling, yet potentially very massive and important system. As to R144, however, the combined data sets are not sufficient to find any periodicity.  相似文献   

13.
Precision radial velocity measurements of the Sun-like dwarf 14 Herculis published by Naef et al., Butler et al. and Wittenmyer, Endl & Cochran reveal a Jovian planet in a 1760-d orbit and a trend indicating the second distant object. On the grounds of dynamical considerations, we test a hypothesis that the trend can be explained by the presence of an additional giant planet. We derive dynamical limits to the orbital parameters of the putative outer Jovian companion in an orbit within ∼13 au. In this case, the mutual interactions between the Jovian planets are important for the long-term stability of the system. The best self-consistent and stable Newtonian fit to an edge-on configuration of Jovian planets has the outer planet in 9-au orbit with a moderate eccentricity of ∼0.2 and confined to a zone spanned by the low-order mean motion resonances 5:1 and 6:1. This solution lies in a shallow minimum of (χ2ν)1/2 and persists over a wide range of the system inclination. Other stable configurations within 1σ confidence interval of the best fit are possible for the semimajor axis of the outer planet in the range of (6,13) au and the eccentricity in the range of (0, 0.3). The orbital inclination cannot yet be determined but when it decreases, both planetary masses approach ∼10 m J and for i ∼ 30° the hierarchy of the masses is reversed.  相似文献   

14.
We discuss the orbital elements of the multiple system Tr 16-104 which is usually believed to be a member of the open cluster Trumpler 16 in the Carina complex. We show that Tr 16-104 could be a hierarchical triple system consisting of a short-period (2.15 d) eclipsing O7 V+O9.5 V binary bound to a B0.2 IV star. Our preliminary orbital solution of the third body indicates that the B star most probably describes an eccentric orbit with a period of ∼285 or ∼1341 d around the close binary. Folding photometric data from the literature with our new ephemerides, we find that the light curve of the close binary exhibits rather narrow eclipses indicating that the two O stars must be well inside their Roche lobes. Our analysis of the photometric data yields a lower limit on the inclination of the orbit of the close binary of i ≥77° . The stellar radii and luminosities of the O7 V and O9.5 V stars are significantly smaller than expected for stars of this spectral type. Our results suggest that Tr 16-104 lies at a distance of the order of 2.5 kpc and support a fainter absolute magnitude for zero-age main-sequence O stars than usually adopted. We find that the dynamical configuration of Tr 16-104 corresponds to a hierarchical system that should remain stable provided that it suffers no strong perturbation. Finally, we also report long-term temporal variations of high-velocity interstellar Ca  ii absorptions in the line of sight towards Tr 16-104.  相似文献   

15.
We report Doppler measurements of the stars HD 187085 and HD 20782 which indicate two high eccentricity low-mass companions to the stars. We find HD 187085 has a Jupiter-mass companion with a ∼1000-d orbit. Our formal 'best-fitting' solution suggests an eccentricity of 0.47, however, it does not sample the periastron passage of the companion and we find that orbital solutions with eccentricities between 0.1 and 0.8 give only slightly poorer fits (based on rms and  χ2ν  ) and are thus plausible. Observations made during periastron passage in 2007 June should allow for the reliable determination of the orbital eccentricity for the companion to HD 187085. Our data set for HD 20782 does sample periastron and so the orbit for its companion can be more reliably determined. We find the companion to HD 20782 has   M sin   i = 1.77 ± 0.22  M Jup  , an orbital period of 595.86 ± 0.03 d and an orbit with an eccentricity of 0.92 ± 0.03. The detection of such high-eccentricity (and relatively low-velocity amplitude) exoplanets appears to be facilitated by the long-term precision of the Anglo-Australian Planet Search. Looking at exoplanet detections as a whole, we find that those with higher eccentricity seem to have relatively higher velocity amplitudes indicating higher mass planets and/or an observational bias against the detection of high-eccentricity systems.  相似文献   

16.
We have measured the radial velocity variation of the white dwarf secondary in the binary system containing the millisecond pulsar PSR J 1012 + 5307. Combined with the orbital parameters of the radio pulsar, we infer a mass ratio q (≡ M 1/ M 2) = 10.5 ± 0.5. Our optical spectroscopy has also allowed us to determine the mass of the white dwarf companion by fitting the spectrum to a grid of DA model atmospheres: we estimate M 2 = 0.16 ± 0.02 M⊙, and hence the mass of the neutron star is 1.64 ± 0.22 M⊙, where the error is dominated by that of M 2. The orbital inclination is 52 ± 4°. For an initial neutron star mass of ∼ 1.4 M⊙, only a few tenths of a solar mass at most has been successfully accreted over the lifetime of the progenitor low-mass X-ray binary. If the initial mass of the secondary was ∼ 1 M⊙, our result suggests that the mass transfer may have been non-conservative.  相似文献   

17.
A new high-quality set of orbital parameters for the O-type spectroscopic binary HD 93205 has been obtained combining échelle and coudé CCD observations. The radial velocity orbits derived from the He  ii λ 4686 Å (primary component) and He  i λ 4471 Å (secondary component) absorption lines yield semi-amplitudes of 133±2 and 314±2 km s−1 for each binary component, resulting in minimum masses of 31 and 13 M ( q =0.42) . We also confirm for the binary components the spectral classification of O3 V+ O8 V previously assigned. Assuming for the O8 V component a 'normal' mass of 22–25 M we would derive for the primary O3 V a mass of 'only' 52–60 M and an inclination of about 55° for the orbital plane. We have also determined for the first time a period of apsidal motion for this system, namely 185±16 yr using all available radial velocity data sets of HD 93205 (from 1975 to 1999). Phase-locked variations of the X-ray emission of HD 93205 consisting of a rise of the observed X-ray flux near periastron passage are also discussed.  相似文献   

18.
We have mapped linearly polarized dust emission from the pre-stellar cores L1498 and L1517B with the James Clerk Maxwell Telescope (JCMT) using the Submillimetre Common User Bolometer Array (SCUBA) and its polarimeter (SCUBAPOL) at a wavelength of 850 μm. We use these measurements to determine the plane-of-sky magnetic field orientation in the cores. In L1498, we see a magnetic field across the peak of the core that lies at an offset of ∼19°± 12° to the short axis of the core. This is similar to the offsets seen in previous observations of pre-stellar cores. To the south-east of the peak, in the filamentary tail of the core, we see that the magnetic field has rotated to lie almost parallel to the long axis of the filament. We hypothesize that the field in the core may have decoupled from the field in the filament that connects the core to the rest of the cloud. We use the Chandrasekhar–Fermi (CF) method to measure the plane-of-sky field strength in the core of L1498 to be ∼10 ± 7 μG.
In L1517B, we see a more gradual turn in the field direction from the northern part of the core to the south. This appears to follow a twist in the filament in which the core is buried, with the field staying at a roughly constant ∼25°± 6° offset to the short axis of the filament, consistent with previous observations of pre-stellar cores. Hence these two clouds in an apparently similar evolutionary state, that exhibit similar masses, morphologies and densities, have very different magnetic field configurations. We again use the CF method and calculate the magnetic field strength in L1517B to be ∼30 ± 10 μG. Both cores appear to be roughly virialized. Comparison with our previous work on somewhat denser cores shows that, for the denser cores, thermal and non-thermal (including magnetic) support are approximately equal, while for the lower density cores studied here, thermal support dominates.  相似文献   

19.
A time-resolved spectroscopic study of V603 Aql (Nova Aquilae 1918) is presented. An orbital period of P orb=01385±00002, consistent with previous results, and a radial velocity semi-amplitude of K =20±3 km s1 are obtained from the radial velocity variations of the H emission line. Similar K values are also found in H , H , and He  i emission lines. Using the measured FWHM of the H line and assuming that the derived semi-amplitude is that of the white dwarf, we deduce a most likely mass ratio of q =0.24±0.05 and stellar masses of M 2=0.29±0.04 M and M 1=1.2±0.2 M for the secondary and primary (the white dwarf) star, respectively. The dynamical solution also indicates a very low orbital inclination, i =13°±2°. We find that the continuum and line variations are modulated with both the positive and the negative superhump periods, indicating that they arise from similar regions of the accretion disc. Moreover, we find, for the first time from spectroscopy, evidence of negative superhumps in addition to the positive superhumps. Positive superhumps are explained within the disc instability model as caused by an eccentric disc surrounding the white dwarf, which is precessing (apsidal advance) because of tidal instabilities, causing the observed positive superhumps. A nodal precession in the accretion disc is currently believed to be the cause of the observed negative superhumps. The low value of q is consistent with the expected value for systems that show superhumps, in accordance with the eccentric disc model. We find no evidence of periodicity associated with the spin period.  相似文献   

20.
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号