首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Asturian Arc was produced in the Early Permian by a large E–W dextral strike–slip fault (North Iberian Megashear) which affected the Cantabrian and Palentian zones of the northeastern Iberian Massif. These two zones had previously been juxtaposed by an earlier Kasimovian NW–SE sinistral strike–slip fault (Covadonga Fault). The occurrence of multiple successive vertical fault sets in this area favoured its rotation around a vertical axis (mille-feuille effect). Along with other parallel faults, the Covadonga Fault became the western margin of a proto-Tethys marine basin, which was filled with turbidities and shallow coal-basin successions of Kasimovian and Gzhelian ages. The Covadonga Fault also displaced the West Asturian Leonese Zone to the northwest, dragging along part of the Cantabrian Zone (the Picos de Europa Unit) and emplacing a largely pelitic succession (Palentian Zone) in what would become the Asturian Arc core. The Picos de Europa Unit was later thrust over the Palentian Zone during clockwise rotation. In late Gzhelian time, two large E–W dextral strike–slip faults developed along the North Iberian Margin (North Iberian Megashear) and south of the Pyrenean Axial Zone (South Pyrenean Fault). The block south of the North Iberian Megashear and the South Pyrenean Fault was bent into a concave, E-facing shape prior to the Late Permian until both arms of the formerly NW–SE-trending Palaeozoic orogen became oriented E–W (in present-day coordinates). Arc rotation caused detachment in the upper crust of the Cantabrian Zone, and the basement Covadonga Fault was later resurrected along the original fault line as a clonic fault (the Ventaniella Fault) after the Arc was completed. Various oblique extensional NW–SE lineaments opened along the North Iberian Megashear due to dextral fault activity, during which numerous granitic bodies intruded and were later bent during arc formation. Palaeomagnetic data indicate that remagnetization episodes might be associated with thermal fluid circulation during faulting. Finally, it is concluded that the two types of late Palaeozoic–Early Permian orogenic evolution existed in the northeastern tip of the Iberian Massif: the first was a shear-and-thrust-dominated tectonic episode from the Late Devonian to the late Moscovian (Variscan Orogeny); it was followed by a fault-dominated, rotational tectonic episode from the early Kasimovian to the Middle Permian (Alleghenian Orogeny). The Alleghenian deformation was active throughout a broad E–W-directed shear zone between the North Iberian Megashear and the South Pyrenean Fault, which created the basement of the Pyrenean and Alpine belts. The southern European area may then be considered as having been built by dispersal of blocks previously separated by NW–SE sinistral megashears and faults of early Stephanian (Kasimovian) age, later cut by E–W Early Permian megashears, faults, and associated pull-apart basins.  相似文献   

2.
The NW-SE oriented Sorgenfrei–Tornquist Zone (STZ) has been thoroughly studied during the last 25 years, especially by means of well data and seismic profiles. We present the results of a first brittle tectonic analysis based on about 850 dykes, veins and minor fault-slip data measured in the field in Scania, including paleostress reconstruction. We discuss the relationships between normal and strike-slip faulting in Scania since the Permian extension to the Late Cretaceous–Tertiary structural inversions. Our paleostress determinations reveal six successive or coeval main stress states in the evolution of Scania since the Permian. Two stress states correspond to normal faulting with NE-SW and NW-SE extensions, one stress state is mainly of reverse type with NE-SW compression, and three stress states are strike-slip in type with NNW-SSE, WNW-ESE and NNE-SSW directions of compression.The NE-SW extension partly corresponds to the Late Carboniferous–Permian important extensional period, dated by dykes and fault mineralisations. However extension existed along a similar direction during the Mesozoic. It has been locally observed until within the Danian. A perpendicular NW-SE extension reveals the occurrence of stress permutations. The NNW-SSE strike-slip episode is also expected to belong to the Late Carboniferous–Permian episode and is interpreted in terms of right-lateral wrench faulting along STZ-oriented faults. The inversion process has been characterised by reverse and strike-slip faulting related to the NE-SW compressional stress state.This study highlights the importance of extensional tectonics in northwest Europe since the end of the Palaeozoic until the end of the Cretaceous. The importance and role of wrench faulting in the tectonic evolution of the Sorgenfrei–Tornquist Zone are discussed.  相似文献   

3.
Two major divisions of the New England Fold Belt, Zone A and Zone B, are separated by the Peel Fault. Deposition in these two zones was probably contemporaneous (Lower Palaeozoic ‐ Lower Permian). Terminal orogenesis in both zones was also contemporaneous (Middle Permian) but whereas in Zone A deformation was only moderate, metamorphism was of burial type, and granitic emplacement was uncommon, in Zone B many rocks were severely deformed and regionally metamorphosed, and both syn‐tectonic and post‐tectonic granites are widespread.

Pre‐orogenic palaeogeography is envisaged in terms of an evolving volcanic chain ‐ fore‐chain basin ‐ trench system, with an outer non‐volcanic arc developed in the Carboniferous. Cessation of movement on a subduction zone dipping westward beneath the volcanic chain is believed to have caused the Middle Permian deformation, but neither metamorphism nor the granitic rocks are directly related to subduction.  相似文献   

4.
《International Geology Review》2012,54(12):1557-1567
ABSTRACT

The present-day tectonic framework of Turkey comprises mainly two strike-slip fault systems, namely dextral North Anatolian and sinistral East Anatolian faults. They are considered as the main cause of deformation patterns in Anatolia. These two mega shear systems meet at Kargapazar? village of Karl?ova county. The area to the east of the junction has a transpressional tectonic regime between the Eurasian and Arabian plates and is characterized, based on field observation, by a network of faults defining a typical horsetail splay structure. The horsetail splay is interpreted as marking the termination of the North Anatolian Fault System (NAFS), which continues eastward into the Varto Fault Zone (VFZ) and then dies out. The present study reveals that the VFZ is made up of two main parts, namely the principal displacement zone (PDZ) and the transpressional splay zone (TPSZ), both characterized by the right-lateral strike-slip with reverse motion. However, the area to the east of Varto is characterized dominantly by reverse-thrust faults and E–W-trending faults as shown by focal mechanism solutions. The generation of the VFZ as a transpressional termination to the NAFS can be related directly to the block movements of the Eurasian, Anatolian, and Arabian plates.  相似文献   

5.
Field observations and interpretations of satellite images reveal that the westernmost segment of the Altyn Tagh Fault (called Karakax Fault Zone) striking WNW located in the northwestern margin of the Tibetan Plateau has distinctive geomorphic and tectonic features indicative of right-lateral strike-slip fault in the Late Quaternary. South-flowing gullies and N–S-trending ridges are systematically deflected and offset by up to ~ 1250 m, and Late Pleistocene–Holocene alluvial fans and small gullies that incise south-sloping fans record dextral offset up to ~ 150 m along the fault zone. Fault scarps developed on alluvial fans vary in height from 1 to 24 m. Riedel composite fabrics of foliated cataclastic rocks including cataclasite and fault gouge developed in the shear zone indicate a principal right-lateral shear sense with a thrust component. Based on offset Late Quaternary alluvial fans, 14C ages and composite fabrics of cataclastic fault rocks, it is inferred that the average right-lateral strike-slip rate along the Karakax Fault Zone is ~ 9 mm/a in the Late Quaternary, with a vertical component of ~ 2 mm/a, and that a M 7.5 morphogenic earthquake occurred along this fault in 1902. We suggest that right-lateral slip in the Late Quaternary along the WNW-trending Karakax Fault Zone is caused by escape tectonics that accommodate north–south shortening of the western Tibetan Plateau due to ongoing northward penetration of the Indian plate into the Eurasian plate.  相似文献   

6.
Several strike–slip faults at Crackington Haven, UK show evidence of right-lateral movement with tip cracks and dilatational jogs, which have been reactivated by left-lateral strike–slip movement. Evidence for reactivation includes two slickenside striae on a single fault surface, two groups of tip cracks with different orientations and very low displacement gradients or negative (left-lateral) displacements at fault tips.

Evidence for the relative age of the two strike–slip movements is (1) the first formed tip cracks associated with right-lateral slip are deformed, whereas the tip cracks formed during left-lateral slip show no deformation; (2) some of the tip cracks associated with right-lateral movement show left-lateral reactivation; and (3) left-lateral displacement is commonly recorded at the tips of dominantly right-lateral faults.

The orientation of the tip cracks to the main fault is 30–70° clockwise for right-lateral slip, and 20–40° counter-clockwise for left-lateral slip. The structure formed by this process of strike–slip reactivation is termed a “tree structure” because it is similar to a tree with branches. The angular difference between these two groups of tip cracks could be interpreted as due to different stress distribution (e.g., transtensional/transpressional, near-field or far-field stress), different fracture modes or fractures utilizing pre-existing planes of weakness.

Most of the dx profiles have similar patterns, which show low or negative displacement at the segment fault tips. Although the dx profiles are complicated by fault segments and reactivation, they provide clear evidence for reactivation. Profiles that experienced two opposite slip movements show various shapes depending on the amount of displacement and the slip sequence. For a larger slip followed by a smaller slip with opposite sense, the profile would be expected to record very low or reverse displacement at fault tips due to late-stage tip propagation. Whereas for a smaller slip followed by larger slip with opposite sense, the dx profile would be flatter with no reverse displacement at the tips. Reactivation also decreases the ratio of dmax/L since for an original right-lateral fault, left lateral reactivation will reduce the net displacement (dmax) along a fault and increase the fault length (L).

Finally we compare Crackington Haven faults with these in the Atacama system of northern Chile. The Salar Grande Fault (SGF) formed as a left-lateral fault with large displacement in its central region. Later right-lateral reactivation is preserved at the fault tips and at the smaller sub-parallel Cerro Chuculay Fault. These faults resemble those seen at Crackington Haven.  相似文献   


7.
The SW part of the Baltic Sea between Scania, Rügen, Bornholm and Mön constitutes a complex crustal transition between the Baltic Shield and the accreted Phanerozoic provinces of the West European Platform. An integrated interpretation of marine reflection seismic data sets from the BABEL AC line and two commercial surveys offshore NE Germany and S Sweden have resulted in a complete view of the structural framework in the area. The general seismic picture can best be detected by two characteristic sets of reflection phases. The lower set is dominated by slightly dipping and vertically displaced prominent reflectors corresponding to downfaulted Lower Palaeozoic strata on top of the Precambrian basement. The upper set represents Mesozoic and Cenozoic coherent reflection phases including a thick Upper Cretaceous unit. The Caledonian deformation front is identified in the southern part of the investigated area as the border against which basement rocks have been affected by Caledonian metamorphism and deformation. Major structural elements also include the N–S trending Agricola–Svedala Fault and North Rügen-Skurup Fault. Several NW–SE trending faults are also identified including the Nordadler–Kamien Fault, Jutland–Mön Fault, Carlsberg Fault, Romeleåsen Fault Zone and the Fyledalen Fault Zone. The sedimentary record from NE German offshore wells and Scanian boreholes is compared with the seismic data. The Cambro-Silurian strata are composed mainly of quartzitic sandstones, shales and biomicritic limestones. The Silurian is dominated by grey, micaceous shale and micaceous siltstone deposited in a marginal basin. Upper Palaeozoic strata are merely encountered in the southernmost part of the investigated area. These include Zechstein strata. The Mesozoic deposits are dominated by a thick Cretaceous sequence of mainly limestones with interbedded sandstones.  相似文献   

8.
Deformational, metamorphic, monazite age and fabric data from Rengali Province, eastern India converge towards a multi-scale transpressional deformational episode at ca. 498–521 Ma which is linked with the latest phase of tectonic processes operative at proto-India-Antarctica join. Detailed sector wise study on mutual overprinting relationships of macro-to microstructural elements suggest that deformation was regionally partitioned into fold-thrust dominated shortening zones alternating with zones of dominant transcurrent deformation bounded between the thrust sense Barkot Shear Zone in the north and the dextral Kerajang Fault Zone in the south. The strain partitioned zones are further restricted between two regional transverse shear zones, the sinistral Riamol Shear Zone in the west and the dextral Akul Fault Zone in the east which are interpreted as synthetic R and antithetic R' Riedel shear plane, respectively. The overall structural disposition has been interpreted as a positive flower structure bounded between the longitudinal and transverse faults with vertical extrusion and symmetric juxtaposition of mid-crustal amphibolite grade basement gneisses over low-grade upper crustal rocks emanating from the central axis of the transpressional belt.  相似文献   

9.
The Main Recent Fault of the Zagros Orogen is an active major dextral strike-slip fault along the Zagros collision zone, generated by oblique continent–continent collision of the Arabian plate with Iranian micro-continent. Two different fault styles are observed along the Piranshahr fault segment of the Main Recent Fault in NW Iran. The first style is a SW-dipping oblique reverse fault with dextral strike-slip displacement and the second style consists of cross-cutting NE-dipping, oblique normal fault dipping to the NE with the same dextral strike-slip displacement. A fault propagation anticline is generated SW of the oblique reverse fault. An active pull-apart basin has been produced to the NE of the Piranshahr oblique normal fault and is associated with other sub-parallel NE-dipping normal faults cutting the reverse oblique fault. Another cross-cutting set of NE–SW trending normal faults are also exist in the pull-apart area. We conclude that the NE verging major dextral oblique reverse fault initiated as a SW verging thrust system due to dextral transpression tectonic of the Zagros collision zone and later it has been overprinted by the NE-dipping oblique normal fault producing dextral strike-slip displacement reflecting progressive change of transpression into transtension in the collision zone. The active Piranshahr pull-apart basin has been generated due to a releasing damage zone along the NW segment of the Main Recent Fault in this area at an overlap of Piranshahr oblique normal fault segment of the Main Recent Fault and the Serow fault, the continuation of the Main Recent Fault to the N.  相似文献   

10.
A 3D structural modelling of the Permian–Mesozoic Polish Basin was performed in order to understand its structural and sedimentary evolution, which led to basin maturation (Permian–Cretaceous) and its tectonic inversion (Late Cretaceous–Paleogene). The model is built on the present-day structure of the basin and comprises 13 horizons within the Permian to Quaternary rocks. The analysis is based on 3D depth views and thickness maps. The results image the basin-scale symmetry, the perennial localization of the NW–SE-oriented basin axis, the salt movements due to tectonics and/or burial, and the transverse segmentation of the Polish Basin. From these observations, we deduce that salt structures are correlated to the main faults and tectonic events. From the model analysis, we interpret the stress conditions, the timing, and the geometry of the tectonic inversion of the Polish Basin into a NW–SE-oriented central horst (Mid-Polish Swell) bordered by two lateral troughs. Emphasis is placed on the Zechstein salt, considering its movements during the Mesozoic sedimentation and its decoupling effect during the tectonic inversion. Moreover, we point to the structural control of the Paleozoic basement and the crustal architecture (Teisseyre–Tornquist Zone) on the geometry of the Polish Basin and the Mid-Polish Swell.  相似文献   

11.
This work is a part of the TOR1 project (1996–1997) and is devoted to determining the lithospheric structure across the Sorgenfrei–Tornquist Zone in Northern Europe. For the first time in Europe, a very dense seismic broadband array has offered the possibility of determining very sharp lateral variations in the structure of the lithosphere at small scales using surface wave analysis. We measure phase velocities for Rayleigh waves with periods ranging between 10 and 100 s, both within arrays with apertures of 40–50 km (small compared to the wavelength), and along long profiles of at least 100 km. Dispersion curves are then inverted and shear-wave velocity models down to the depth of 200 km are proposed. We show that the Sorgenfrei–Tornquist Zone is a major tectonic feature within the whole lithosphere. North–east of this feature, in Sweden beneath the Baltic Shield, no lithosphere–asthenosphere boundary is observed to exist to depths of 200 km. South–west of the Sorgenfrei–Tornquist Zone, beneath Denmark, we find a lithospheric thickness of 120±20 km. The transition across the Sorgenfrei–Tornquist Zone is sharp and determined to be very steeply dipping to the south–west. We also demonstrate the existence of a sharp discontinuity between the lithospheres beneath Denmark (120±20 km thick) and beneath Germany (characterized by thicknesses of 50±10 km in the northernmost part and 100±20 km in the southwest). This discontinuity is most likely related to the Trans-European Fault at the surface.  相似文献   

12.
中国西南部红河断裂带的活动演化历史长期以来备受国内外学者的关注,该断裂从陆地向海域延伸进入莺歌海盆地,并对莺歌海盆地的形成和演化起重要的控制作用。目前,红河断裂带经历早期的左旋走滑运动和后期的右旋走滑运动已经得到公认,但对于其精细的构造演化历史及其左旋走滑向右旋走滑运动转换的时间还未能达成共识。本文利用构造控制沉积、沉积反映构造的思想,通过对莺歌海盆地三维地震资料的构造解析,从T27界面上下地层厚度存在"跷跷板"式的变化、沉积中心的迁移、沉积速率的变化、陆架-陆坡坡折带的出现、微小断裂的特征以及底辟构造等方面的研究,确定莺歌海盆地红河断裂带的左旋走滑运动停止于T40(10.5Ma);T40~T30(10.5~5.5Ma)是构造变形的平静期;T30~T27(5.5~2.4 Ma)为左旋走滑运动向右旋走滑运动转换时期;T27(2.4 Ma)以后右旋走滑活动开始,并控制坡折带(包括莺歌海盆地和琼东南盆地)和底辟构造等的形成;T20(1.9 Ma)以来,右旋走滑活动逐渐减弱。  相似文献   

13.
敦密断裂带白垩纪两期重要的变形事件   总被引:1,自引:1,他引:0  
本文报道了敦密断裂带糜棱岩中黑云母~(40)Ar/~(39)Ar定年结果和大规模走滑-逆冲断裂的几何学、运动学特征及其形成时代,以便揭示断裂带两期变形事件的构造属性。黑龙江省密山市花岗质糜棱岩中黑云母~(40)Ar/~(39)Ar加权平均年龄为132.2±1.2Ma,它是敦密断裂带经历伸展事件的冷却年龄,也是东北亚大陆边缘在早白垩世Hauterivian期-Albian期发生强烈区域伸展作用的产物。密山市至辽宁省清原县系列大型走滑-逆冲断层和断层相关褶皱揭示出在晚白垩世晚期-末期发生右旋走滑-逆冲事件,该事件规模大,影响范围广,导致整个断裂带遭受到强烈改造,形成对冲式断裂系统。将研究区走滑-逆冲断裂与山东省郯庐断裂带中段挤压构造对比,认为郯庐断裂带北段和中段在晚白垩世末期都发生了强烈的走滑-逆冲事件,它们具有相同的构造特征和构造属性。  相似文献   

14.
The Moho topography is strongly undulating in southern Scandinavia and northeastern Europe. A map of the depth to Moho shows similarities between the areas of the Teisseyre–Tornquist Zone (TTZ) in Poland and the Fennoscandian Border Zone (FBZ), which is partly coinciding with the Sorgenfrei–Tornquist Zone (STZ) in Denmark. The Moho is steeply dipping at these zones from a crustal thickness of approximately 32 km in the young Palaeozoic Platform and basin areas to approximately 45 km in the old Precambrian Platform and Baltic Shield. The Moho reflectivity (PMP waveform) in the POLONAISE'97 refraction/wide-angle seismic data from Poland and Lithuania is variable, ranging from ‘sharp’ to strongly reverberating signals of up to 2 s duration. There is little or no lower crustal wide-angle reflectivity in the thick Precambrian Platform, whereas lower crustal reflectivity in the thin Palaeozoic Platform is strongly reverberating, suggesting that the reflective lower crust and upper mantle is a young phenomena. From stochastic reflectivity modelling, we conclude that alternating high- and low-velocity layers with average thicknesses of 50–300 m and P-wave velocity variations of ±3–4% of the background velocity can explain the lower crustal reflectivity. Sedimentary layering affects the reflectivity of deeper layers significantly and must be considered in reflectivity studies, although the reverberations from the deeper crust cannot be explained by the sedimentary layering only. The reflective lower crust and upper mantle may correspond to a zone that has been intruded by mafic melts from the mantle during crustal extension and volcanism.  相似文献   

15.
The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by "flower" strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269(5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.  相似文献   

16.
A number of en échelon-arranged, southwest-facing arc fragments of Palaeozoic to Jurassic ages, sandwiched between two fairly straight east-northeast trending boundaries, constitute the basement of the Scythian and the Turan platforms located between the Laurasian and Tethyside units. They have until now largely escaped detection owing to extensive Jurassic and younger cover and the inaccessibility of the subsurface data to the international geological community. These units are separated from one another by linear/gently-curved faults of great length and steep dip. Those that are exposed show evidence of strike-slip motion. The arc units originally constituted parts of a single “Silk Road Arc” located somewhere south of the present-day central Asia for much of the Palaeozoic, although by the late Carboniferous they had been united into a continental margin arc south of the Tarim basin and equivalent units to the west and east. They were stacked into their present places in northern Afghanistan, Turkmenistan, Caucasus and the northern Black Sea by large-scale, right-lateral strike-slip coastwise transport along arc-slicing and arc-shaving strike-slip faults in the Triassic and medial Jurassic simultaneously with the subductive elimination of Palaeo-Tethys. This gigantic dextral zone (“the Silk Road transpression”) was a trans-Eurasian structure and was active simultaneously with another, similar system, the Gornostaev keirogen and greatly distorted Eurasia. The late Palaeozoic to Jurassic internal deformation of the Dniepr–Donets aulacogen was also a part of the dextral strain in southern Europe. When the emplacement of the Scythian and Turan units was completed, the elimination of Palaeo-Tethys had also ended and Neo-Tethyan arcs were constructed atop their ruins, mostly across their southern parts. The western end of the great dextral zone that emplaced the Turan and Scythian units horsetails just east of north Dobrudja and a small component goes along the Tornquist–Teisseyre lineament.  相似文献   

17.
Brittle failure is common in the Devonian to Permian rocks in the Northern Hastings Block (NHB) and is manifested by faults of different orientation and kinematic histories, but the timing of fault movement is not well defined. In this study, faults in the NHB were analysed with the map pattern of cross-cutting faults used to estimate the relative time of movement and relationship to other faults. We defined five episodes of faulting or fault reactivation that affected the NHB. The Yarras Fault System on the southwestern side of the NHB and the Parrabel Fault and related faults on the eastern side of the NHB are the two major fault systems responsible for transporting and rotating the NHB in the late Carboniferous. Faults on the eastern, northeastern and northern part of Parrabel Dome started and stopped moving after emplacement of the Hastings Block and before the intrusion of the Werrikimbe Triassic granitoids. We suggested that the movement on the major bounding faults is related to the accommodation of the NHB to the folding and cleavage development in the adjoining Nambucca Block, and is associated with the earliest part of the Hunter–Bowen Orogeny. Limited dextral movement on the extensions of the Taylors Arm Fault System caused minor displacements in the northeastern part of the NHB during the Late Triassic. Some small faults cut the Triassic granitoids or Triassic Lorne Basin sediments indicating tectonic activity continued post-Triassic.  相似文献   

18.
The Meuse River crosses the Feldbiss Fault Zone, one of the main border fault zones of the Roer Valley Graben in the southern part of the Netherlands. Uplift of the area south of the Feldbiss Fault Zone forced the Meuse River to incise and, as a result, a flight of terraces was formed. Faults of the Feldbiss Fault Zone have displaced the Middle and Late Pleistocene terrace deposits. In this study, an extensive geomorphological survey was carried out to locate the faults of the Feldbiss Fault Zone and to determine the displacement history of terrace deposits.The Feldbiss Fault Zone is characterized by an average displacement rate of 0.041–0.047 mm a−1 during the Late Pleistocene. Individual faults show an average displacement rate ranging between 0.010 and 0.034 mm a−1. The spatial variation in displacement rates along the individual faults reveals a system of overstepping faults. These normal faults developed by reactivation of Paleozoic strike-slip faults.As fault displacements at the bases of the younger terrace deposits are apparently similar to the tops of the adjacent older terrace, the age of these horizons is the same within thousands of years. This implies that the model of terrace development by rapid fluvial incision followed by slow aggradation does apply for this area.  相似文献   

19.
The Southern Variscan Front in the Tinerhir area involves Palaeozoic allochthonous units (Ouaklim and Tilouine units) thrust onto the northern edge of the West African Craton during late Carboniferous time. Illite crystallinity data highlight an anchizonal grade for the Ouaklim Unit, and a diagenesis-anchizone transition for the Tilouine Unit during deformation phase D1. The tectonic stack is crosscut by major dextral reverse faults bounding E–W trending domains of dominant shortening deformation (central domain) and strike-slip deformation (northern and southern domains), later segmented by a network of post-Variscan faults. This complex deformation pattern is the result of kinematic partitioning of dextral transpression along the Southern Variscan Front, coeval with the Neovariscan (300–290 Ma) oblique convergence observed at the scale of the whole Moroccan Variscides. Partitioning of dextral transpression described in the Tinerhir area is consistent with dextral wrench faulting along the Tizi n’ Test Fault, and with Appalachian-style south-directed thrusting in the Tinerhir and Bechar-Bou Arfa areas.  相似文献   

20.
Based on integration of seismic reflection and well data analysis this study examines two major contourite systems that developed during the late Cretaceous in the southern Baltic Sea. The evolution of these Chalk Sea contourite systems between the Kattegat and the southern Baltic Sea started when Turonian to Campanian inversion tectonics overprinted the rather flat sea floor of the epeiric Chalk Sea. The Tornquist Zone and adjacent smaller blocks were uplifted and formed elongated obstacles that influenced the bottom currents. As a consequence of the inversion, the sea floor west of the Tornquist Zone tilted towards the north‐east, creating an asymmetrical sub‐basin with a steep marginal slope in the north‐east and a gentle dipping slope in the south‐west. A south‐east directed contour current emerged in the Coniacian or Santonian along the south‐western basin margin, creating contourite channels and drifts. The previously studied contourite system offshore Stevns Klint is part of this system. A second, deeper and north‐west directed counter‐flow emerged along and parallel to the Tornquist Zone in the later Campanian, but was strongest in the Maastrichtian. This bottom current moderated the evolution of a drift‐moat system adjacent to the elevated Tornquist Zone. The near surface Alnarp Valley in Scania represents the Danian palaeo‐moat that linked the Pomeranian Bay with the Kattegat. The previously studied contourite system in the Kattegat represents the north‐western prolongation of this system. This study links previous observations from the Kattegat and offshore Stevns Klint to the here inferred two currents, a more shallow, south‐east directed and a deeper, north‐west directed flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号