首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability of mine waste dump is very important for an economic and safety point of view. The biological method is the most popular and eco-friendly approach to stabilize the mine waste dump in the long term. Trees outclass grasses and shrubs for long term stability as the roots of trees are stronger and penetrate deeper. Their roots bind the dump material and form a composite material having high shear strength. The mechanics of stabilization by tress have yet not been fully understood. Moreover, one always refers to biological stabilization of slope qualitatively rather than quantitatively. A numerical simulation tool has been used in the present paper to assess the increased factor of safety of a vegetated dump slope. The Sisam tree was chosen for the present study as it is commonly available in northern India, needs little care and has high economic value. The increased shear strength of the dump mass having tree roots was calculated by shear box test. The tree roots occupy large space, hence, a large size shear box (1.5 m × 1.5 m × 0.75 m) has specifically been designed and fabricated for determining the shear strength of dump root matrix. A small size shear box (0.30 m × 0.30 m × 0.15 m) has also been designed and fabricated to determine the increased shear strength due to small trees. It was observed that the Sisam tree of even moderate size binds the upper layers of mine dump and improve the factor of safety substantially. It was also observed that the stability of dump slope improves with time (i.e. size of tree).  相似文献   

2.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

3.
The root biomass distribution in alpine ecosystems (alpine meadow, alpine steppe, desert grassland and alpine desert) was investigated along a transect on the northern Tibetan Plateau in 2009. The results showed that roots were mainly concentrated in the 0–20 cm layer, and root biomass decreased exponentially with increasing soil depth. Root biomass was estimated to be 1,381.41 ± 245.29 g m−2 in the top 20 cm soil, accounting for 85% of the total root biomass. The distribution pattern of the root biomass proportion along the soil profile was similar in different alpine ecosystems. The root biomass density varied with different alpine ecosystems and the total average root biomass was 1,626.08 ± 301.76 g m−2. Root biomass was significantly correlated with average relative humidity, annual precipitation and soil organic matter. This indicates that precipitation and soil organic matter might be crucial for plant growth in the study area, while temperature is not an important factor controlling root growth.  相似文献   

4.
To understand and predict the role of soils in changes in alpine meadow ecosystems during climate warming, soil monoliths, extending from the surface to the deepest roots, were collected from Carex moorcroftii, Kobresia humilis, mixed grass, and Kobresia pygmaea alpine meadows in the hinterland of the Tibetan Plateau, China. The monoliths were used to measure the distribution with depth of biomass, soil grain size, soil nutrient levels, and soil moisture. With the exception of the K. pygmaea meadow, the percentages of gravel and coarse sand in the soils were high, ranging from 37.7 to 57.8% for gravel, and from 18.7 to 27.9% for coarse sand. The texture was finest in the upper 10 cm soil layer, and generally became coarser with increasing depth. Soil nutrients were concentrated in the top 15 cm soil layer, especially in the top 10 cm. Soil water content was low, ranging from 3 to 28.4%. Most of the subsurface biomass was in the top 10 cm, with concentrations of 79.8% in the K. humilis meadow, 77.6% in the mixed grass meadow, and 62.3% in the C. moorcroftii meadow. Owing to deeper root penetration, the concentration of subsurface biomass in the upper 10 cm of K. pygmaea soil was only 41.7%. The subsurface biomass content decreased exponentially with depth; this is attributed to the increase in grain size and decrease in soil nutrient levels with depth. Soil water is not a primary factor influencing the vertical and spatial distribution of subsurface biomass in the study area. The lack of fine material and of soil nutrients resulted in low surficial and subsurface biomass everywhere.  相似文献   

5.
Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ26Mgplant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ∼0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ26Mg (by ∼0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ26Mgleaf-root = −0.65‰ and −0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ26Mgleaf-root of −0.06‰ and −0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of the mean river δ26Mg that is comparable to analytical uncertainties.  相似文献   

6.
In May of 2007, a study was initiated by the National Institute of Oceanography (NIO), Goa, India, to investigate the influence of monsoonal rainfall on hydrographic conditions in the Mandovi River of India. The study was undertaken at a location ∼2 km upstream of the mouth of this estuary. During the premonsoon (PreM) in May, when circulation in the estuary was dominated by tidal activity, phytoplankton communities in the high saline (35–37 psu) waters at the study site were largely made up of the coastal neritic species Fragilaria oceanica, Ditylum brightwellii and Trichodesmium erythraeum. During the later part of the intermonsoon (InterM) phase, an abrupt decline in salinity led to a surge in phytoplankton biomass (Chlorophyll a ∼14 mg m − 3), of a population that was dominated by Thalassiosira eccentricus. As the southwest monsoon (SWM) progressed and the estuary freshened salinity and Chlorophyll a (Chl a) concentrations decreased during the MoN, Skeletonema costatum established itself as the dominant form. Despite the low biomass (Chl a <2 mg m − 3), the phytoplankton community of the MoN was the most diverse of the entire study. During the postmonsoon (PostM), the increase in salinity was marked by a surge in dinoflagellate populations comprising of Ceratium furca, Akashiwo sanguinea, and Pyrophacus horologium.  相似文献   

7.
Anthropogenic activities have always been the cause of most environmental degradation, and mangrove disappearance is no exception. A comparative assessment on the biodiversity of natural and degraded mangrove forests has been undertaken, looking at the biomass, both above-ground and below-ground. The natural and the degraded mangrove forests were situated at Kuala Selangor and Sungai Haji Dorani, respectively, both on the West coast of Peninsular Malaysia. A random sample scheme with quadrate sample plots (10 m × 10 m) was adopted for the measurement of the diameter at breast height and total height of individual tree species at both forests. Diversity indices and above- and below-ground biomass were estimated from this inventory. Eight mangrove tree species were identified at both study areas, namely: Bruguiera parviflora, Avicennia officinalis, Rhizophora mucronata, Sonneratia alba, Avicennia marina, Bruguiera cylindrica, Xylocarpus mekongensis and Excoecaria agallocha. The mangrove species in Sungai Haji Dorani showed high diversity with a Shannon–Weiner Index (H′) value of 0.91, compared to the natural mangrove of Kuala Selangor which has a lower value, H′ = 0.55. The dominant species in the natural mangrove area was B. parviflora, with the highest Important Value Index (IVI) of 70.96 %, as opposed to A. marina which was the most common species in the degraded mangrove area, with IVI of 49.16 %. An estimate of 305.46 t/ha of above-ground biomass was calculated for the natural mangrove, while 122.78 t/ha was obtained for the degraded mangrove forest. This contrasts with the below-ground biomass estimates, which were 14.09 t/ha for the natural mangrove and 36.35 t/ha for the degraded mangrove.  相似文献   

8.
The C and N stable isotope compositions of some flora of East Africa from coastal Tanzania and Amboseli National Park (Kenya) are used to assess if they can be used as a terrestrial end member during the estimation of terrestrial fraction in coastal marine sediments. The results of C isotope composition of various tree leaves, which average −29.3 ± 1.4%, indicate that these tropical higher land plant species follow a Calvin-Benson or non-Kranz (C3) type of metabolism. The results for grass species, which average −13.2 ± 2.4%, indicate that most of them follow a Hatch-Slack or Kranz (C4) type of metabolism. However, some of the succulent plants from the Amboseli National Park have δ13C values that average −14.7%, an indication that they follow a CAM (Crassulacean Acid Metabolism) type of metabolism. The N isotope values are relatively higher than expected for the terrestrial organic material. The average δ15N values for both tree and grass samples are higher than 5% and fall within the range normally considered to be marine. The high enrichment in 15N may be related to the environmental conditions in which plants thrive. Plants growing in sandy, dry and overgrazed environments are expected to be enriched in 15N owing to full utilisation of all available N species, regardless of their isotopic compositions. Other processes which may cause an enrichment in 15N include adsorption by various types of clay minerals, supply of 15N-enriched nitrate through sea-spray, and local denitrification, especially in swampy and lake margins where the input of organic matter may be higher than the rate of decomposition.The stable isotopic composition of organic C and N for surficial organic matter for the coastal marine sediments averages −17.0 ± 0.9% and 5.4 ± 1.1%, respectively. These values indicate a substantial contribution of C4 plants and sea grasses. However, contribution of C4 relative to that of sea grasses can not be evaluated owing to the fact that there is no significant difference in the isotopic compositions between the two groups.In the savannah environment, where a contribution from the C4 types of plants might be substantial, the δ13C value for a terrestrial end member needs to be established prior to evaluation of the terrestrially derived organic matter in the marine environment. Owing to a significant contribution of sea grasses to the total organic matter preserved in coastal marine sediments, the stable isotopes of organic C seem to have a limited applicability as source indicators in the East African coastal waters. Furthermore, the results indicate that N stable isotopes seem to have a limited applicability as source indicators in coastal waters of East Africa. However, more work needs to be conducted to determine the terrestrial and sea grass end member values for the coastal areas.  相似文献   

9.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

10.
Eco-restoration of mine overburden (OB) or abandoned mine sites is a major environmental concern. In the present investigation, an integrated approach was used to rejuvenate a high-sulphur mine OB dumping site in the Tirap Collieries, Assam, India, which is situated in the Indo-Burma mega-biodiversity hotspot. A mine OB is devoid of true soil character with poor macro and micronutrient content and contains elevated concentrations of trace and heavy metals. Planting of herbs, shrubs, cover crops and tree species at close proximity leads to primary and secondary sere state succession within a period of 3 to 5 years. A variety of plant species were screened for potential use in restoration: herbs, including Sccharum spontaneum, Cymbopogon winterianus Jowitt (citronella), and Cymbopogon flexuosus (lemon grass) cover plants, including Mimosa strigillosa, M. striata, and M. pigra; shrubs, including Sesbania rostrata (dhaincha) and Cassia streata (cassia); and tree species, including Gmelina arborea (gomari) and Dalbergia sissoo (sissoo). Amendment with unmined soil and bio-organic matter was required for primary establishment of some plant species. Management of these plant species at the site will ensure long term sustainable eco-restoration of the coal mine-degraded land.  相似文献   

11.
Seasonal variation patterns of aboveground and belowground biomass, net primary production, and nutrient accumulation were assessed inAtriplex portulacoides L. andLimoniastrum monopetalum (L.) Boiss. in Castro Marim salt marsh, Portugal. Sampling was conducted for five periods during 2001–2002 (autumn, winter, spring, summer, and autumn). This study indicates that both species have a clear seasonal variation pattern for both aboveground and belowground biomass. Mean live biomass was 2516 g m−2 yr−1 forL. monopetalum and 598 g m−2 yr−1 forA. portulacoides. Peak living biomass, in spring for both species, was three times greater in the former, 3502 g m−2 yr−1, than in the latter, 1077 g m−2 yr−1. For both the Smalley (Groenendijk 1984) and Weigert and Evans (1964) methods, productivity ofL. monopetalum (2917 and 3635 g m−2 yr−1, respectively) was greater than that ofA. portulacoides (1002 and 1615 g m−2 yr−1, respectively). Belowground biomass ofL. monopetalum was 1.7 times greater than that ofA. portulacoides. In spite of this, the root:shoot ratio forA. monopetalum to aerial components. Leaf area index was similar for both species, but specific leaf area ofA. portulacoides was twice that ofL. monopetalum. The greatest nutrient contents were found in leaves. Leaf nitrogen content was maximum in summer for both species (14.6 mg g−1 forA. portulacoides and 15.5 mg g−1 forL. monopetalum). Leaf phosphorus concentration was minimum in summer (1.1 mg g−1 inA. portulacoides and 1.2 mg g−1 inL. monopetalum). Leaf potassium contents inA. portulacoides were around three times greater than inL. monopetalum. Leaf calcium contents inL. monopetalum were three times greater than inA. portulacoides. There was a pronounced seasonal variation of calcium content in the former, while in the latter no clear variation was registered. Both species exhibited a decrease in magnesium leaf contents in the summer period. Mangamese content inL. monopetalum leaves was tenfold that inA. portulacoides. Seasonal patterns of nutrient contents inA. portulacoides andL. monopetalum suggest that availability of these elements was not a limiting factor to biomass production.  相似文献   

12.
Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of εpor suggests that values of εpor could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record.  相似文献   

13.
This study reports on trace metal uptake by the grass species Melinis repens, growing in roadside soils and sediments in tropical northeastern Australia. Median total Cu, Pb, Ni and Zn concentrations were significantly (P < 0.05) higher in road edge soils (Cu = 61.1 mg/kg, Pb = 97.3 mg/kg, Ni = 28.6 mg/kg, Zn = 729 mg/kg) than in background soils collected away from roads (Cu = 5.8 mg/kg, Pb = 11.2 mg/kg, Ni = 3.7 mg/kg, Zn = 21 mg/kg). Significantly (P < 0.05) elevated Zn values were recorded in the stems of the M. repens specimens growing on roadside soils (231.6 mg/kg dry weight of tissue) compared with those of grasses growing on background soils (40.8 mg/kg dry weight of tissue). Moreover, median Cu, Ni and Zn values in the roots of roadside grasses (Cu = 29.1 mg/kg, Ni = 2.73 mg/kg, Zn = 169 mg/kg) were significantly (P < 0.05) higher than their respective levels in the roots of background M. repens samples (Cu = 5.98 mg/kg, Ni = 0.70 mg/kg, Zn = 22 mg/kg). A greenhouse experiment showed that Cu and Zn in road sediments are labile and are available for uptake by M. repens. The studied roadside soils and sediments were leached with a diethylenetriaminepentaacetic acid–CaCl2–triethanolamine–HCl extraction solution, which proved to be a rudimentary indicator of Zn availability and uptake to the root tissue of M. repens. The results demonstrate that trace metals in roadside grasses have the potential to be directed up the food-chain as grasses are consumed by herbivores. In addition, bioavailable metal contaminants hosted by road sediments have the capacity to impact on ecosystems downstream of roads because these sediments are mobilised by road runoff waters from road surfaces into adjoining catchments.  相似文献   

14.
An investigation of glassy volcanics erupted within the last ten-million years along various segments of the mid-Atlantic Ridge and the East Pacific Rise has revealed major crustal compositional changes. The available data from the mid-Atlantic Ridge shows the existence of two petrological provinces: One, located between latitudes 33° and 53° N, is characterized by volcanics which have a tendency to be oversaturated ocean ridge basalts (OSORB) with respect to normative quartz; the second group of rocks, found between 25° S and 33° N, is generally composed of saturated ocean ridge basalts (SORB). In addition, the SORB volcanics have higher TiO2 (1.7±0.3%), higher Na2O (2.8±0.2%) and higher FeO*/MgO (1.36±0.2) values than do the OSORB types (with 1.1±0.2%, 2.2±0.2% and 1.22±0.2 for the TiO2, Na2O, and FeO*/MgO respectively), There is a correlation between the rate of crustal spreading and the compositional changes observed on the volcanics erupted along various segments of oceanic ridges. Slow-accreting plate boundaries having a total spreading rate of 2–3 cm/year are characterized by a low TiO2 content (1.1±0.2%), low FeO*/ MgO ratio (1.22±0.2) and a high an/an+ab ratio (0.62±0.05). Segments of fast-spreading ridges (total rate 11–13 cm/year) show a higher range of TiO2 (2.1±0.4%) and FeO*/MgO (1.6±0.4) and a lower range of the an/an + ab ratio (0.5±0.07). Ridge segments with a total spreading rate of 5–9 cm/year con sist of volcanics having intermediate values for the above parameters. Different degrees of partial melting of rising mantle material are suggested as a possible mechanism for explaining the compositional diversities encountered along oceanic ridge systems.Contribution n 677 du Département de Géophysique, Géologie, Géochimie Marines du C.O.B.  相似文献   

15.
The elastic properties of coexisting natural 3T and 2M 1 phengite samples (Cima Pal, Sesia Zone; Val Savenca; Western Alps, Italy) with similar chemical compositions have been studied by room temperature–high pressure powder diffraction, using synchrotron radiation on the ID9A beam-line at ESRF (Grenoble, France). The PV curves have been modelled by the Birch–Murnaghan model; a third-order expansion fitted to the experimental data yields for 3T and 2M 1 K 0=60.4(±0.7) GPa, K′=5.79(±0.11) at V 0=703.8851 Å3, and K 0=57.3(±1.0) GPa, K′=6.97(±0.24) at V 0=938.8815 Å3, respectively. The relative stability of 3T vs. 2M 1 has been explored as a function of pressure and temperature in terms of configuration and deformation contributions to the Gibbs energy, using the elastic properties determined here and other thermodynamic parameters from earlier investigations. The results presented agree with the hypothesis of stability of the 3T polytype in the high pressure regime.  相似文献   

16.
Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.  相似文献   

17.
As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by ‘pumping’ lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope (206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine (Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ∼100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ∼1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/207Pb ratio of ∼1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m−2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (∼50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ∼0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m−2 yr−1 (mean ± SD), is taken up from the mor layer, the mineral soil and the atmosphere, respectively, by plants in the undisturbed mature forest. These small fluxes, which are at least a magnitude lower than reported downward migration losses, suggest that plant uptake will not strongly prolong the self-cleaning rate of the mor layer.  相似文献   

18.
The effects of advection, dispersion, and biological processes on nitrogen and phytoplankton dynamics after a storm event in December 2002 are investigated in an estuary located on the northern New South Wales coast, Australia. Salinity observations for 16 d after the storm are used to estimate hydrodynamic transports for a one-dimensional box model. A biological model with nitrogen limited phytoplankton growth, mussel grazing, and a phytoplankton mortality term is forced by the calculated transports. The model captured important aspects of the temporal and spatial dynamics of the bloom. A quantitative analysis of hydrodynamic and biological processes shows that increased phytoplankton biomass due to elevated nitrogen loads after the storm was not primarily regulated by advection or dispersion in spite of an increase in river flow from <1 to 928×103 m3 d−1. Of the dissolved nitrogen that entered the surface layer of the estuary in the 16 d following the storm event, the model estimated that 28% was lost through exchange with the ocean or bottom layers, while 15% was removed by the grazing of just one mussel species,Xenostrobus securis, on phytoplankton, and 50% was lost through other biological phytoplankton loss processes.X. securis grazing remained an important loss process even when the estimated biological parameters in the model were varied by factors of ± 2. The intertidal mangrove pneumatophore habitat ofX. securis allows filtering of the upper water column from the lateral boundaries when the water column is vertically stratified, exerting top-down control on phytoplankton biomass.  相似文献   

19.
Mortality, litter fall, and patterns of stem growth were examined in Rhizophora- and Ceriops-dominated forests located upstream and downstream in four tidally dominated creeks within a beach reef embayment on the northern Great Barrier Reef coast. Although patterns of stem densities, basal area, and diameter-at-breast height (DBH) between upstream–downstream sites and creeks were inconsistent, aboveground biomass, wood production, litter fall, and aboveground net primary productivity (ANPP) were greater in the Rhizophora-dominated forests. Incremental growth of stems (SI, cm year−1) was slow compared to other mangroves, declining among species as follows: Rhizophora stylosa (mean = 0.080) > Bruguiera exaristata (0.066) = Xylocarpus australasicus (0.064) = Ceriops australis (0.056); SI was greater upstream than downstream, possibly due to nutrient inputs from upland sugarcane cultivation. The DBH of dead trees were less than the DBH of live trees, suggesting natural mortality, which was greatest for X. australasicus (annual rate = 3.27%), followed by B. exaristata (0.84%), C. australis (0.48%), and R. stylosa (0.33%). Rates of litter fall were seasonal and equivalent to those measured in other mangroves, but rates of ANPP were, on average, low in most plots. Salinity was likely the main factor limiting growth as correlations of salinity with tree growth and production were negative. Nutrients may have also played a key regulatory role, with positive correlations between mangrove production and N and P content of soils and leaves and the comparatively low nutrient content of these sandy soils. The low ratio of wood to litter production suggests that these forests are in a mature stage of development.  相似文献   

20.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号