首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
波与非均匀介质的相互作用是多年来地球物理研究的理论问题之一.本文基于地震成像算子,定量分析了库车坳陷盐相关逆冲推覆构造的复杂性.首先,根据地震资料计算了大北构造、博孜构造、却勒构造、西秋10构造和西秋4构造的速度横向变化非均质谱和地层倾角变化非均质谱,这些量化表征高陡构造地质复杂性的地质非均质谱定最描述了速度横向变化和...  相似文献   

2.

复杂近地表散射衰减所有的地面观测波场,形成半随机半相干的近地表强散射噪音背景,弥漫整个炮集,淹没深层反射信号,是导致地震资料极低信噪比的主要原因.如何研究和评价近地表散射强度一直是石油勘探未解决的问题,这与起伏地表的粗糙度、近地表速度横向变化和结构倾角分布密切相关.基于前期复杂近地表边界元法波动方程数值模拟研究,本文提出一种复杂近地表散射振幅矩阵方法来分析近地表散射强度.首先对复杂近地表结构进行边界元配置方法离散,根据边界积分方程生成矩阵方程.我们不求解该矩阵方程(涉及海量计算),只是利用矩阵分析技术来解析矩阵方程中的散射振幅系数矩阵,研究复杂近地表结构对不同频率波场的散射强度.该方法利用边界元对近地表结构几何特征的精确表征,研究起伏地表和非规则地质分界面对地震波传播的影响,由基本解及其在边界上的法向导数经过高斯数值积分计算得到的散射振幅系数矩阵,不仅描述了任意两点之间的相互影响,同时还刻画了边界形状特征的影响,为评价不同地质结构的散射强度提供了可能性.作为初步评价手段,我们采用矩阵元素总和与矩阵维数之比作为表征散射振幅系数矩阵散射特征的标量复杂系数,通过理论和实际模型测试,形成了一套行之有效、计算快速的近地表复杂性分析方法.

  相似文献   

3.
The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis methods, and the complexity characteristics of crest-mantle boundary beneath the studied area and its adjacent region were determined. The results show that the place below epicenter can be taken as boundary, the northern side of which is Inner Mongolia axis with small complexity coefficient and the southern side of which is Huai'an basin with large complexity coefficient. The different spectrum patterns at the two sides of the epicenter were inferred from spectrum analysis. In the epicentral area, there have been multi-period magmatic eruptions since Meso-Cenozoic and craters exist at the surface. From the velocity imaging of middle and upper crust in Zhangbei seismic region it can be found that there are crustal low velocity bodies around the craters and also there are low velocity zones, which went into deep crust. It is suggested that the distinct zones of crust-mantle boundary complexity may be the margin, where the magma had intruded due to magma activity in Meso-Cenozoic. The southern side with large complexity coefficient is deep magmatic activity area and the northern side with small complexity coefficient is stable crust-mantle tectonics. The difference of crust-mantle complexity provides deep background for the development of strong earthquake.  相似文献   

4.
工程结构等延性地震抗力谱研究   总被引:21,自引:7,他引:21  
研究结构的非弹性反应谱对改进现有的结构抗震设计、发展基于性态的抗震设计以及了解复杂地面运动特性与结构动力特性之间的关系具有重要的意义。利用大量的单自由度在强震记录作用下的弹塑性动力时程分析,对等延性地震抗力谱这一重要的非弹性反应谱进行了较为详尽的研究,给出了四类场地条件(基岩、硬土、一般土和软土)下的平均等延性地震抗力谱,总结了对工程结构的抗震设计和研究具有实际意义的规律和特征,并分析了场地条件、结构的延性系数以及周期等对等延性地震抗力谱的影响,提出了新的拟合公式,其成果可供抗震研究和设计直接应用。  相似文献   

5.
从地震构造环境、地形地貌、场地工程地质岩性特征、场址环境噪声勘测等,详细阐述鹤岗三道林场地震台阵场址的地质条件,并参考测震台站DB/T 16—2006、中国数字测震台网技术规程JSGC—01、地震监测台网项目地震台阵场址勘选技术指南及地震测震台站观测环境技术要求GB/T 19531.2—2004等台站建设规范和标准,认为该地震台阵场址地质条件符合台站建设的相关要求,建成后将进一步提高鹤岗市及周边地区微震活动的监测能力。  相似文献   

6.
摩擦摆隔震结构地震反应谱的计算分析   总被引:2,自引:0,他引:2  
探讨了摩擦摆基底隔震结构的地震反应谱规律。采用上部结构-摩擦摆两质点模型并利用系统振动微分方程,计算绘制了设计参数(质量比、摩擦系数、滑道半径)不同取值下上部结构的绝对加速度、侧向位移和基底水平滑移反应谱。结果表明:摩擦摆系统对刚度较大的上部结构具有良好的隔震效果。摩擦系数对上部结构的加速度反应、层间水平侧移和系统滑移均有较大的影响,质量比的影响次之.而滑道半径仅对系统滑移有较为显著的作用。  相似文献   

7.
Uneven distribution of seismic demand in asymmetric-plan structures is a critical concern in earthquake-resistant design. Contemporary seismic design strategies that are based on linear elastic response, single load reduction factor, and uniform ductility demand throughout an asymmetric system generally lead to unsatisfactory performance in terms of realized ductilities and nonuniform damage distribution due to strong torsional coupling associated with asymmetric-plan systems. In many cases, actual nonlinear behavior of the structure displays significant deviation from what is estimated by a linear elastic, force-based seismic design approach. This study investigates the prediction of seismic demand distribution among structural members of a single-story, torsionally stiff asymmetric-plan system. The focus is on the effect of inherent unbalanced overstrength, resulting from current force-based design practices, on the seismic response of code-designed single-story asymmetric structures. The results obtained are utilized to compile unsymmetrical response spectra and uniform ductility spectra, which are proposed as assessment and preliminary design tools for estimating the seismic performance of multistory asymmetric structures. A simple design strategy is further suggested for improving the inelastic torsional performance of asymmetric systems. Providing additional strength to stiff edge members over their nominal design strength demands leads to a more balanced ductility distribution. Finally, seismic responses of several asymmetric case study structures designed with the aid of the proposed strategy are assessed for validating their improved performance.  相似文献   

8.
Effect of depth of soil stratum on estimated inelastic displacement of three typical structures, viz. a four storey building, a continuous bridge, and a tower, is studied and adequacy of the site amplification models of the current design codes and available empirical relationships is examined. The structures are assumed to be located on well-defined sites with varying bedrock depths, and effect of depth on elastic response spectrum, site amplification factor, displacement modification factor and inelastic displacement is studied, numerically, for two values of PGA. It is observed that soil depth has a significant effect on elastic as well as inelastic response of the structures; however, the effect of soil amplification on inelastic response is not as pronounced as in case of elastic response. Therefore, use of empirical site amplification models based on elastic response may be too conservative, for estimating inelastic response.  相似文献   

9.
A risk-targeted design spectral acceleration and the corresponding seismic design action for the force-based design of structures is introduced by means of two formulations. The first one called direct formulation utilizes the seismic hazard function at the site of the structure. Because the seismic action defined in the codes is often associated with a designated return period, an indirect formulation is also introduced. It incorporates a risk-targeted safety factor that can be used to define a risk-targeted reduction factor. It is shown that the proposed formulations give analogical results and provide an insight into the concept of the reduction of seismic forces for the force-based seismic design of structures if the objective is defined by a target collapse risk. The introduced closed-form solution for the risk-targeted reduction factor can be used to investigate how the target collapse risk, the seismic hazard parameters, the randomness of the seismic action, and the conventional parameters (ie, the overstrength factor and the deformation and energy dissipation capacity) affect the seismic design forces in the case of force-based design. However, collaborative research is needed in order to develop appropriate models of these parameters. In the second part of the paper, the proposed formulations are demonstrated by estimating the risk-targeted seismic design action for a six-storey reinforced concrete building. By verifying the collapse risk of the designed structure, it is demonstrated that the risk-targeted seismic action, in conjunction with a conventional force-based design, provided structure with acceptable performance when measured in terms of collapse risk.  相似文献   

10.
This paper presents a new methodology based on structural performance to determine uniform fragility design spectra, i.e., spectra with the same probability of exceedance of a performance level for a given seismic intensity. The design spectra calculated with this methodology provide directly the lateral strength, in terms of yield‐ pseudo‐accelerations, associated with the rate of exceedance of a specific ductility characterizing the performance level for which the structures will be designed. This procedure involves the assessment of the seismic hazard using a large enough number of seismic records of several magnitudes; these records are simulated with an improved empirical Green function method. The statistics of the performance of a single degree of freedom system are obtained using Monte Carlo simulation considering the seismic demand, the fundamental period, and the strength of the structure as uncertain variables. With these results, the conditional probability that a structure exceeds a specific performance level is obtained. The authors consider that the proposed procedure is a significant improvement to others considered in the literature and a useful research tool for the further development of uniform fragility spectra that can be used for the performance‐based seismic design and retrofit of structures.  相似文献   

11.
Empirical correlations between response spectra, magnitude, distance from the source and geological site conditions are introduced in a regional study of seismic hazard. A 350-year earthquake catalogue is treated by means of the statistics of extremes and both the spectral amplitudes (pseudovelocity) corresponding to a series of frequency bands are separately mapped, and the complete predicted response spectra calculated at some sites. Three kinds of geological site conditions are considered: thick and thin (less than 20 m deep) alluvium, and rock. A particular dependence of the results on the geographical distribution of earthquakes and on their magnitudes is commented. The seismic hazard of the study area is also computed by applying a traditional regression between peak ground velocity, magnitude and distance; a comparison with the seismic hazard given by the frequency dependent psuedovelocity indicates the extent of the uncertainty associated with the common practice of scaling response spectra directly from ground motion parameters.  相似文献   

12.
In the paper a simplified nonlinear method has been applied to the analysis of base‐isolated structures. In the first part, a three‐linear idealization of the capacity curve is proposed. The initial stiffness is defined based on the first yielding point in the superstructure, whereas the secondary slope depends on the failure mechanism of the superstructure. A consequence is a much more pronounced secondary slope, which does not correspond to the presumptions used in the originally proposed N2 method. A parametric nonlinear dynamic study of single degree of freedom systems with different hardening slopes and damping has been performed for an ensemble of seven EC8 spectrum‐compatible artificial accelerograms. It was concluded that, in the long‐period range, the equal displacement rule could be assumed also for the proposed systems with non‐zero post‐yield stiffness. In the second part, the proposed idealization was used for the analysis of isolated RC frame buildings that were isolated with different (lead) rubber‐bearing isolation systems. The stiffness of the isolators was selected for three different protection levels and for three different ground motion intensities, which have resulted in elastic as well as moderately and fully damaged superstructure performance levels. Three different lateral load distributions were investigated. It was observed that a triangular distribution, with an additional force at the base, works best in the majority of practical cases. It was concluded that the N2 method can, in general, provide a reasonably accurate prediction of the actual top displacement, as well as of the expected damage to the superstructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The nonlinear behavior of reinforced concrete (RC) members represents a key issue in the seismic performance assessment of structures. Many structures constructed in the 1980s or earlier were designed based on force limits; thus they often exhibit brittle failure modes, strength and stiffness degradation, and severe pinching effects. Field surveys and experimental evidence have demonstrated that such inelastic responses affect the global behavior of RC structural systems. Efforts have been made to consider the degrading stiffness and strength in the simplified nonlinear static procedures commonly adopted by practitioners. This paper investigates the accuracy of such procedures for the seismic performance assessment of RC structural systems. Refined finite element models of a shear critical bridge bent and a flexure‐critical bridge pier are used as reference models. The numerical models are validated against experimental results and used to evaluate the inelastic dynamic response of the structures subjected to earthquake ground motions with increasing amplitude. The maximum response from the refined numerical models is compared against the results from the simplified static procedures, namely modified capacity spectrum method and coefficient method in FEMA‐440. The accuracy of the static procedures in estimating the displacement demand of a flexure‐critical system and shear‐critical system is discussed in detail. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The efficacy of various ground motion intensity measures (IMs) in the prediction of spatially distributed seismic demands (engineering demand parameters, (EDPs)) within a structure is investigated. This has direct implications to building‐specific seismic loss estimation, where the seismic demand on different components is dependent on the location of the component in the structure. Several common IMs are investigated in terms of their ability to predict the spatially distributed demands in a 10‐storey office building, which is measured in terms of maximum interstorey drift ratios and maximum floor accelerations. It is found that the ability of an IM to efficiently predict a specific EDP depends on the similarity between the frequency range of the ground motion that controls the IM and that of the EDP. An IMs predictability has a direct effect on the median response demands for ground motions scaled to a specified probability of exceedance from a ground motion hazard curve. All of the IMs investigated were found to be insufficient with respect to at least one of magnitude, source‐to‐site distance, or epsilon when predicting all peak interstorey drifts and peak floor accelerations in a 10‐storey reinforced concrete frame structure. Careful ground motion selection and/or seismic demand modification is therefore required to predict such a spatially distributed demands without significant bias. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper the question of possible adverse effects of damping in seismic isolation because of higher mode response is investigated by means of simple models with a few degrees of freedom (DOF). In particular the second mode response of a 2 DOF system is examined in detail for both viscous and hysteretic (e.g. friction or elastoplastic) damping devices. Qualitative and approximate quantitative estimates are obtained by neglecting the influence of the modal coupling terms, due to viscous damping or friction forces, on the first mode response. It is shown that additional viscous damping has a diminishing effect on base displacement, storey shear force and floor spectra values in the vicinity of the first mode resonance. However, a significant amplification of the floor spectra values near the higher mode frequencies may occur. In accordance with the results of previous works, compared with the viscous damping case, hysteretic damping amplifies moderately the first storey shear force and significantly the upper storeys shear force. It also results, in a much more pronounced amplification of the floor spectral values than viscous damping, in the vicinity of the higher eigenfrequencies. However, the higher modes' response is milder if a realistic velocity dependence of the friction coefficient is taken into account. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

17.
结构抗震分析用地震动强度指标的研究   总被引:10,自引:0,他引:10  
随着基于性能结构抗震设计方法的推广应用,结构弹塑性时程分析逐渐成为主要的分析方法,但该方法所面临主要困难是缺乏对地震波选择的统一标准.由于影响地震动的参数很多,且不同参数对结构弹塑性地震响应的影响规律又十分复杂,因此能综合反映各种地震动参数对结构弹塑性地震响应影响的地震动强度指标成为基于性能结构抗震设计方法研究中的一个基本问题.本文参考已有学者的研究成果,总结归纳了现有主要的33个地震动强度指标,基于弹塑性SDOF和MDOF系统的代表性地震响应指标,分析了不同地震动强度指标与不同结构地震响应指标之间的相关性,研究了不同地震动指标的适用范围和优缺点,给出了结构抗震分析用地震强度指标的建议.  相似文献   

18.
An approximate seismic risk assessment procedure for building structures, which involves pushover analysis that is performed utilizing a deterministic structural model and uncertainty analysis at the level of the equivalent SDOF model, is introduced. Such an approach is computationally significantly less demanding in comparison with procedures based on uncertainty analysis at the level of the entire structure, but still allows for explicit consideration of the effect of record‐to‐record variability and modelling uncertainties. A new feature of the proposed pushover‐based method is the so‐called probabilistic SDOF model. Herein, the proposed methodology is illustrated only for reinforced concrete (RC) frames, although it could be implemented in the case of any building structure, provided that an appropriate probabilistic SDOF model is available. An extensive parametric analysis has been performed within the scope of this study in order to develop a probabilistic SDOF model, which could be used for the seismic risk assessment of both code‐conforming and old, that is, non code‐conforming RC frames. Based on the results of risk analysis for the four selected examples, it is shown that the proposed procedure can provide conservative estimates of seismic risk with reasonable accuracy, in spite of the employed simplifications and the relatively small number of Monte Carlo simulations with Latin hypercube sampling, which are performed at the level of the SDOF model. An indication of the possible default values of dispersion measures for limit‐state intensities in the case of low to medium‐height RC frames is also presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Floor diaphragm in-plane stiffness affects building response to horizontal ground accelerations. This paper describes a series of elastic and inelastic time history analyses of symmetric structures with different deformation types, configurations and heights to quantify these effects. It is shown that displacements of single storey elastically responding structures tend to be most significantly affected by diaphragm flexibility. Analyses of these structures were cross-verified by a closed-form mechanics-based formulation developed to describe the response. Simple relationships were proposed to allow designers to conservatively estimate the increase in peak in-plane displacement resulting from diaphragm flexibility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The recent concerns regarding the seismic safety of the existing building stock have highlighted the need for an improvement of current seismic assessment procedures. Alongside with the development of more advanced commercial software tools and computational capacities, nonlinear dynamic analysis is progressively becoming a common and preferable procedure in the seismic assessment of buildings. Besides the complexity associated with the formulation of the mathematical model, major issues arise related with the definition of the seismic action, which can lead to different levels of uncertainty in terms of local and global building response. Aiming to address this issue, a comparative study of different code‐based record selection methods proposed by Eurocode 8, ASCE41‐13 and NZS1170.5:2004 is presented herein. The various methods are employed in the seismic assessment of four steel buildings, designed according to different criteria, and the obtained results are compared and discussed. Special attention is devoted to the influence of the number of real ground motion records selected on the estimation of the mean seismic response and, importantly, to the efficiency that is achieved when an additional selection criteria, based on the control of the spectral mismatch of each individual record with respect to the reference response spectrum, is adopted. The sufficiency of the methods with respect to the pairs of M–R of the selected group of records and the robustness of the scaling procedure are also examined. The paper closes with a study which demonstrates the suitability of a simplified probability‐based approach recently proposed for estimating mean seismic demands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号