首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2013年4月20日在四川芦山发生了Ms7.0地震,震源运动学反演结果给出了此次地震的破裂过程和同震滑动分布.为了更好地理解造成芦山地震破裂过程的力学原因,本文综合野外地质调查、余震定位、深地震反射剖面等结果,构建芦山地震铲型断层模型,以震源运动学反演结果为约束,将震源参数与震源附近的构造应力场结合,建立断层面上滑动量...  相似文献   

2.
1 Introduction Earthquake disaster investigations show that numerous strong earthquakes were caused by remobilization of active faults. Major casualties and severe damage to buildings as well as signi?cant economic losses resulted from the ground motions of strongearthquakescausedbyactivefaultslocatedbeneath urban areas. Recently, the potential hazard prediction of and its mitigation against active faults located beneath urban areas have become an important research topic for seismologists and…  相似文献   

3.
We study the ground motion simulations based on three finite-source models for the 2007 Mw6.6 Niigata Chuetsu-oki, Japan, earthquake in order to discuss the performance of the input ground motion estimations for the near-field seismic hazard analysis. The three models include a kinematic source inverted from the regional accelerations, a dynamic source on a planar fault with three asperities inferred from the very-near-field ground motion particle motions, and another dynamic source model with conjugate fault segments. The ground motions are calculated for an available 3D geological model using a finite-difference method. For the comparison, we apply a goodness-of-fit score to the ground motion parameters at different stations, including the nearest one that is almost directly above the ruptured fault segments. The dynamic rupture models show good performance. We find that seismologically inferred earthquake asperities on a single fault plane can be expressed with two conjugate segments. The rupture transfer from one segment to another can generate a significant radiation; this could be interpreted as an asperity projected onto a single fault plane. This example illustrates the importance of the fault geometry that has to be taken into account when estimating the very-near-field ground motion.  相似文献   

4.
In considering the seismic spectrum, one of the methods to incorporate irregularity of fault motion statistically is to introduce the concept of coherency of fracture. In a classic paper,Aki (1967) investigated the scaling law of seismic spectrum on the basis of a statistical model in which an exponentially decaying function is fitted to the autocorrelation function of the dislocation velocity. It is found, however, thatAki's model does not necessarily express irregular fault motion, but corresponds to a smooth dislocation. We show that an analytical function of dislocation velocity gives the same autocorrelation function and the same seismic spectrum as those ofAki's model. In actual fault motion, there is considerable evidence which indicates that the dislocation is not continuous and smooth over the whole fault plane, but is often segmented in several parts. In order to take into consideration this feature we introduce a generalized autocorrelation function of the dislocation velocity in which many coherent fractures smaller than the size of the fault dimension are included. It is shown that the more small-scale coherent fractures, the larger the seismic wave energy in the high frequency range.Kanamori andAllen (1986) showed that a large ratio of seismic wave energy relative to the seismic moment means a large effective stress drop. On the other hand, it is well known that when a fault plane is segmented in several parts, stress drop becomes large (e.g.,Madariaga, 1979;Rudnicki andKanamori, 1981). These two results are fused in our model, because we find that large seismic wave energy is obtained when the fault motion includes small-scale fractures.Kanamori andAllen (1986) also showed that there is a tendency for earthquakes with long repeat times to have a large effective stress drop. Our model implies that a fracture corresponding to earthquakes with long recurrence intervals is more complex, and the strength is large, as also suggested byCao andAki (1986) using a numerical simulation. It should be noted that to the zeroth order, an approximate scaling relation is observed among earthquakes, which means that a large earthquake consists of a relatively large-scale coherent fracture. This fact seems to suggest that the condition of occurrence of a large earthquake is related to the maturing of a source region in which a large coherent fracture becomes feasible.  相似文献   

5.

地震自发破裂模拟是震源动力学研究的重要内容,了解复杂的断层动力学破裂过程对深入认识震源特征和解释运动学反演结果具有重要意义.基于边界积分方程方法的破裂模拟已经被广泛使用,大多采用的是平面断层模型的结构化网格划分.由于实际的断层往往具有较为复杂的几何特征,为了更为灵活地刻画断层几何复杂性,我们建立断层模型的三角形网格离散方案,通过精确的解析解形式来计算断层各个单元之间的应力格林函数,联立滑动弱化摩擦准则和非奇异边界积分方程,对断层的自发破裂过程进行了模拟.在简单的平面断层模型下,将计算结果与前人的结果进行了对比,验证了方法的正确性与有效性.对于几种常见的复杂断层模型,例如弯折、阶跃、含障碍体断层等,我们模拟了其破裂过程并对计算结果进行了比较与分析.模拟结果表明,非结构化网格划分的边界积分方程方法能够很好地模拟平面矩形断层或由其组成的规则断层,同时也能成功地模拟具有复杂几何形状的不规则断层上的动力学破裂过程.本研究的结果显示了边界积分方程方法在模拟复杂断层系统的动力学破裂问题上具有较广阔的应用前景.

  相似文献   

6.
2017年8月9日的新疆精河MS6.6地震是近年来天山北缘发生的最大地震,震中位于由多条逆冲断层组成的库松木契克断裂带内.由于震源较深、构造形变复杂、区域地震台站相对稀疏,仅根据震源机制解、余震分布和InSAR观测结果等难以直接判定发震构造.本文针对倾滑型地震发展了一种基于区域地震波形的破裂方向性测定方法,利用余震作为参考地震进行路径校正,根据主震和参考地震的波形时移差和Pn-Pg到时差分别确定主震在水平方向和深度方向的破裂尺度,进而推断同震破裂的延展方向和延伸尺度.本文在反演了主震的点源参数后,应用新发展的方法测定了地震的破裂方向性.点源反演结果显示,精河地震是一个发生在中地壳的高角度逆冲地震,矩震级约6.2,质心深度21km,震源持续时间5.5s,两个双力偶节面分别为102°/45°/106°(NP1)和259°/47°/74°(NP2).破裂方向性分析结果显示,地震的破裂面为南倾的NP1节面,地震沿着破裂起始点向西南方向、向下破裂,总破裂长度约11.5km,其中,沿深度的破裂范围约7km,沿水平的破裂范围约9km,平均破裂速度约2.1km·s-1.综合区域地质资料、卫星影像等判定本次地震的发震断层为精河南断层,地震可能只破裂了断层的下段(17~25km),并未破出地表.  相似文献   

7.
In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roughly with the results of kinematic inversion, implying that for earthquakes in which ruptures run up directly to the ground surface, the dynamic processes are controlled by geometry of the fault to a great extent. By taking the common feature inferred by various kinematic inversion studies as a restriction, we found that the critical slip-weakening distance <i<D</i<<sub<c</sub< should locate in a narrow region 60 cm, 70 cm, and supershear rupture might occur during this earthquake, if the initial shear stress before the mainshock is close to the local shear strength.  相似文献   

8.
根据成丛小震发生在大震断层面及其附近的原则,将模拟退火算法和高斯-牛顿算法结合,给出了利用小震密集程度求解主震断层面走向、倾角、位置及其误差的稳健估计方法,在此基础上考虑区域构造应力参数,给出了估计在已求得的断层面上的滑动角的方法.该方法还可用于小震活跃地区活断层走向、倾角和滑动角的确定.将这种方法用于唐山地震序列,采用2002年4月1日至2006年5月31日发生在地震破裂区的精定位地震目录,求得了唐山地震、滦县地震、宁河及卢龙断裂带的断层面走向、倾角、位置及滑动角参数.与前人给出的断层面解进行比较,发现利用小震精定位资料和区域构造应力场得到的结果与前人采用其他资料和方法得到的结果近似,验证了这种方法的有效性.另外,本研究首次发现滦县地震区东部的小震呈北东-南西向条带状成丛发生,可精确刻画为一条断裂带,较为精确地确定了此断层的走向、倾角和滑动角.该断裂及宁河断裂在唐山地震序列发生时是否破裂需要运用其他资料进行验证.  相似文献   

9.
Statistical relations between different earthquake parameters, such as M0 (seismic moment), ES (seismic energy), τa (apparent stress), A (rupture area), g (average slip acceleration), are investigated. For this purpose, a kinematic earthquake model representing averaged earthquake rupture process is formulated. The model implies a scaling relationship for τa as a function of three other parameters, related to kinematic (M0), geometric (A) and material (g) source characteristics, which, according to the model, can change independently. This scaling relation is used to explain statistical trends that characterize different earthquake data sets (including micro-, small, moderate and large events) plotted in the log τa − log M0 space, and to determine the area in this space, where typical earthquakes occur. The scaling relationship is interpreted in terms of the apparent stress minimum (i.e., the most uniform among the possible earthquake rupture patterns). It is concluded that, although the apparent stress increases on an average with increasing seismic moment, small and large earthquakes are essentially similar.  相似文献   

10.
The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake faults. Dislocation theory in an elastic half space indicates that if a seismic rupture directly runs up to the ground surface, there exist zero points of horizontal strain in the surface deformation, which correspond to the rupture depths, except for pure strike-slip faults. In this study, we use numerical simulations to investigate the possibility of inferring rupture depths from zero-strain points for cases of buried faults and heterogeneous media. The results show that the correspondence of zero-strain points to the rupture depths can be influenced by the heterogeneity of the underground media and the stress field. For buried faults, the correspondence relationship is approximately valid when the fault depth is <1 km. In addition, the range of earthquake fault dip angles can be estimated by horizontal displacements on the ground. We also study how to determine the rupture depths of faults from InSAR data after large earthquakes, and successfully apply the method to the 2008 Wenchuan earthquake. The method proposed here, which determines the parameters of fault geometry according to surface deformation, is simple and easy to perform. With independent of aftershocks, it can provide valuable constraints to kinematic inversions.  相似文献   

11.
On October 17, 2014, a MS6.6 earthquake occurred in Jinggu, Yunnan. The epicenter was located in the western branch of Wuliang Mountain, the northwest extension line of Puwen Fault. There are 2 faults in the surrounding area, one is a sinistral strike-slip and the other is the dextral. Two faults have mutual intersection with conjugate joints property to form a checkerboard faulting structure. The structure of the area of the focal region is complex. The present-day tectonic movement is strong, and the aftershock distribution indicates the faulting surface trending NNW. There is no obvious surface rupture related to the known fault in the epicenter, and there is a certain distance from the surface of the Puwen fault zone. Regional seismic activity is strong. In 1941, there were two over magnitude 7.0 earthquakes in the south of the epicenter of Jinggu County and Mengzhe Town. In 1988, two mainshock-aftershock type earthquakes occurred in Canglan-Gengma Counties, the principal stress axes of the whole seismic area is in the direction of NNE. Geological method can be adopted to clarify the distribution of surficial fracture caused by active faults, and high-precision seismic positioning and spatial distribution characteristics of seismic sequences can contribute to understand deep seismogenic faults and geometric features. Thus, we can better analyze the three-dimensional spatial distribution characteristics of seismotectonics and the deep and shallow tectonic relationship. The focal mechanism reveals the property and faulting process to a certain extent, which can help us understand not only the active property of faults, but also the important basis for deep tectonic stress and seismogenic mechanism. In order to study the fault characteristic of the Jinggu earthquake, the stress field characteristics of the source area and the geometric parameters of the fault plane, this paper firstly uses the 15 days aftershock data of the Jingsuo MS6.6 earthquake, to precisely locate the main shock and aftershock sequences using double-difference location method. The results show that the aftershock sequences have clustering characteristics along the NW direction, with a depth mainly of 5~15km. Based on the precise location, calculations are made to the focal mechanisms of a total of 46 earthquakes including the main shock and aftershocks with ML ≥ 3.0 of the Jinggu earthquake. The double-couple(DC)component of the focal mechanism of the main shock shows that nodal plane Ⅰ:The strike is 239°, the dip 81°, and the rake -22°; nodal plane Ⅱ, the strike is 333°, the dip 68°, and the rake -170.31°. According to focal mechanism solutions, there are 42 earthquakes with a focal mechanism of strike-slip type, accounting for 91.3%. According to the distribution of the aftershock sequence, it can be inferred that the nodal plane Ⅱ is the seismogenic fault. The obtained focal mechanism is used to invert the stress field in the source region. The distribution of horizontal maximum principal stress orienation is concentrated. The main features of the regional tectonic stress field are under the NNE-SSW compression(P axis)and the NW-SE extension(T axis)and are also affected by NNW direction stress fields in the central region of Yunnan, which indicates that Jinggu earthquake fault, like Gengma earthquake, is a new NW-trending fault which is under domination of large-scale tectonic stress and effected by local tectonic stress environment. In order to define more accurately the occurrence of the fault plane of the Jinggu earthquake, with the precise location results and the stress field in the source region, the global optimal solution of the fault plane parameters and its error are obtained by using both global searching simulated annealing algorithm and local searching Gauss-Newton method. Since the parameters of the fault plane fitting process use the stress parameters obtained by the focal mechanism inversion, the data obtained by the fault plane fitting is more representative of the rupture plane, that is, the strike 332.75°, the dip 89.53°, and the rake -167.12°. The buried depth of the rupture plane is 2.746km, indicating that the source fault has not cut through the surface. Based on the stress field characteristics and the inversion results of the fault plane, it is preliminarily believed that the seismogenic structure of the Jinggu earthquake is a newly generated nearly vertical right-lateral strike-slip fault with normal component. The rupture plane length is about 17.2km, which does not extend to the Puwen fault zone. Jinggu earthquake occurred in Simao-Puer seismic region in the south of Sichuan-Yunnan plate. Its focal mechanism solution is similar to that of the three sub-events of the Gengma earthquake in November 1988. The seismogenic structure of both of them is NW-trending and the principal stress is NE-SW. The rupture plane of the Jinggu main shock(NW direction)is significantly different from the known near NS direction Lancang Fault and the near NE direction Jinggu Fault in the study area. It is preliminarily inferred that the seismogenic structure of this earthquake has a neogenetic feature.  相似文献   

12.
基于一维单侧有限移动震源模式,根据地震波传播过程中的多普勒效应,分别利用P波和S波拐角频率的方位变化,反演2012年7月20日江苏高邮、宝应交界MS4.9地震的发震断层面参数。P波和S波拐角频率的反演结果一致显示:本次地震的断层面破裂方向为232°左右,破裂面呈NE-SW向;地震马赫数v/c为0.2左右,平均破裂速度小于S波速度,破裂长度较短,为0.2~0.3km左右。破裂面方位与震源机制解、宏观烈度调查和余震精定位的研究结果具有一致性,结合震区周边的地质构造背景,分析认为滁河断裂很可能是高邮、宝应交界MS4.9地震的发震构造。  相似文献   

13.
2015年7月3日皮山6.5级地震发震构造初步研究   总被引:11,自引:1,他引:10       下载免费PDF全文
李金  王琼  吴传勇  向元 《地球物理学报》2016,59(8):2859-2870
基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面Ⅱ:走向100°/倾角30°/滑动角90°,矩心深度19 km,表明该地震为一次逆冲型地震事件.大部分MS3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,ML2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15 km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面Ⅱ的滑动角较为接近,绝大多数余震发生在断层面附近10 km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.  相似文献   

14.

断层的自发破裂及其产生的地震波场是地震学研究的重要内容.断层几何形态和自发破裂过程中的动力学参数不同,往往会导致不同的震源破裂过程,进而对地震波场产生显著的影响.本文基于不同几何形态的断层上的自发破裂过程,通过计算研究其产生的地震波场的特征.针对弯折和分叉的断层系统,我们考察了初始成核区位置以及超剪切破裂对于地震波场的影响.结果显示,对于弯折断层,随着弯折角的增大,地震波场的峰值分布沿着弯折方向产生变化,过大的弯折角会对地震波场起抑制作用;在断层上破裂距离越长,积累的能量越大,引起的地震波场峰值也越大.对于分叉断层,角度更小的分支面具有更大的破裂优势,破裂强度更大,会引起更大的地震波场峰值.超剪切破裂将使得地震波场振幅更大,激发高频成分,在波形上能观察到明显的脉冲,同时增大永久位移.通过研究动力学破裂产生的地震波场的行为,有助于增进对地震波场特征产生原因的认识,为进一步的动力学参数反演奠定了基础.

  相似文献   

15.
刘煜杭  钱峰  冯禧  张海明 《地球物理学报》2023,66(12):4916-4927

研究地震断层的自发破裂传播可以为通过震源过程了解地球介质应力状态提供理论基础,有助于理解震源破裂的机理和规律,在震源动力学研究中具有重要的地位.边界积分方程方法是研究地震断层破裂传播问题的常用方法之一,在处理复杂断层系统方面具有优势.本文从半无限空间Green函数的时间域积分形式解出发,推导出离散化的边界积分方程积分核,并将其分别应用到平面断层和弯折断层两种断层模型的动力学破裂过程的模拟中.模拟结果表明,当破裂传播到自由表面处时,会产生反射震相,反射震相与直达震相的耦合效应会导致自由表面处的破裂传播速率明显加快,同时这种耦合效应也可以促进破裂在断层弯折部位的传播.对于断层有一定埋深的情况,自由表面对破裂过程的影响较小,因而自由表面的效应仅在断层直接与地表相交或者断层上沿距离地表很近时需要纳入考虑范围.本文将自由表面的影响加入到断层的自发破裂传播研究中,有助于更真实地了解复杂断层系统中的动力学破裂过程.

  相似文献   

16.
Historically, large and potentially hazardous earthquakes have occurred within the interior of Alaska. However, most have not been adequately studied using modern methods of waveform modeling. The 22 July 1937, 16 October 1947, and 7 April 1958 earthquakes are three of the largest events known to have occurred within central Alaska (M s =7.3,M s =7.2 andM s =7.3, respectively). We analyzed teleseismic body waves to gain information about the focal parameters of these events. In order to deconvolve the source time functions from teleseismic records, we first attempted to improve upon the published focal mechanisms for each event. Synthetic seismograms were computed for different source parameters, using the reflectivity method. A search was completed which compared the hand-digitized data with a suite of synthetic traces covering the complete parameter space of strike, dip, and slip direction. In this way, the focal mechanism showing the maximum correlation between the observed and calculated traces was found. Source time functions, i.e., the moment release as a function of time, were then deconvolved from teleseismic records for the three historical earthquakes, using the focal mechanisms which best fit the data. From these deconvolutions, we also recovered the depth of the events and their seismic moments. The earthquakes were all found to have a shallow foci, with depths of less than 10 km.The 1937 earthquake occurred within a northeast-southwest band of seismicity termed the Salcha seismic zone (SSZ). We confirm the previously published focal mechanism, indicating strike-slip faulting, with one focal plane parallel to the SSZ which was interpreted as the fault plane. Assuming a unilateral fault model and a reasonable rupture velocity of between 2 and 3 km/s, the 21 second rupture duration for this event indicates that all of the 65 km long SSZ may have ruptured during this event. The 1947 event, located to the south of the northwest-southeast trending Fairbanks seismic zone, was found to have a duration of about 11 seconds, thus indicating a rupture length of up to 30 km. The rupture duration of the 1958 earthquake, which occurred near the town of Huslia, approximately 400 km ENE of Fairbanks, was found to be about 9 seconds. This gives a rupture length consistent with the observed damage, an area of 16 km by 64 km.  相似文献   

17.
—On May 25th, 1992, an M s = 6.9 earthquake occurred off the southwestern tip of Cuba, along the boundary between the Caribbean and North American plates. This earthquake was the largest to strike southern Cuba since 1917 and the largest ever recorded in that region by global seismic networks. It is therefore a key element for our understanding of the tectonic and kinematic regime along the northern Caribbean plate boundary. In order to test the previously proposed source parameters of the Cabo Cruz earthquake and to better constrain its focal mechanism, we derived a new set of source parameters from unfiltered broad-band teleseismic records. We used a hybrid ray tracing method that allows us to take into account propagation effects of seismic waves in a realistic crustal model around the source. Our solution is consistent with the long-period focal mechanism solution of Virieux et al. (1992). Our solution also models the higher frequency crustal and water layer phases. The primarily strike-slip focal mechanism has a small thrust component. Its shows an east-west trending nodal plane dipping 55° to the north that we interpret as the rupture plane since it corresponds to the geometry of the major active fault in that area. The displacement on this plane is a left-lateral strike-slip combined with a small amount of southward thrust. The result is in good agreement with the active tectonic structures observed along the Oriente fault south of Cuba. The small thrust component demonstrates that, contrary to prior belief, the transpressive regime extends along this whole segment of the Caribbean/North American plate boundary. Together with historical seismicity, it suggests that most of the stress accumulated by the Caribbean/North American plate motion is released seismically along the southern Cuban margin during relatively few but large earthquakes.  相似文献   

18.
芦山7.0级地震序列的震源位置与震源机制解特征   总被引:7,自引:0,他引:7       下载免费PDF全文
基于中国国家和四川区域数字地震台网记录,采用HypoDD方法精确定位了四川芦山ML2.0级以上地震序列的震源位置,采用CAP方法反演了36次ML4.0级以上地震的最佳双力偶震源机制解,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数,从而综合分析了芦山地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,7.0级主震的震源位置为30.30°N、102.97°E,初始破裂深度为15 km左右,震源矩心深度为14 km左右,最佳双力偶震源机制解的两组节面分别为走向209°/倾角46°/滑动角94°和走向23°/倾角44°/滑动角86°,可视为纯逆冲型地震破裂,绝大多数ML4.0级以上余震的震源机制也表现出与主震类似的逆冲破裂特征.ML2.0级以上余震序列发生在主震两侧,集中分布的长轴为30 km左右,震源深度主要集中在5~27 km,ML3.5级以上较大余震则集中分布在9~25 km的深度上,并揭示出发震断层倾向北西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向207°/倾角50°/滑动角92°,绝大多数余震发生在断层面附近10 km左右的区域.综合地震序列分布特征、主震震源深度和已有破裂过程研究结果,可以推测主震破裂过程自初始点沿断层的两侧扩展破裂,南侧破裂比北侧稍长,滑动量主要集中在初始破裂点附近,可能没有破裂到地表.综合本文研究成果、地震烈度分布和现有的科学考察结果,初步推测发震构造为龙门山山前断裂,也不排除主震震中东侧还存在一条未知的基底断裂发震的可能性.  相似文献   

19.
According to the China Earthquake Networks Center, a strong earthquake of M6.8 occurred in Luding County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, China (102.08°E, 29.59°N), on September 5, 2022, with a focal depth of 16 km. Rapid determination of the source parameters of the earthquake sequence is vital for post-earthquake rescue, disaster assessment, and scientific research. Near-field seismic observations play a key role in the fast and reliable determination of earthquake source parameters. The numerous broadband seismic stations and strong-motion stations recently deployed by the National Earthquake Intensity Rapid Report and Early Warning project have provided valuable real-time near-field observation data. Using these near-field observations and conventional mid- and far-field seismic waveform records, we obtained the focal mechanism solutions of the mainshock and M ≥ 3.0 aftershocks through the waveform fitting method. We were further able to rapidly invert the rupture process of the mainshock. Based on the evaluation of the focal mechanism solution of the mainshock and the regional tectonic setting, we speculate that the Xianshuihe fault formed the seismogenic structure of the M6.8 strong earthquake. The aftershocks formed three spatially separated clusters with distinctly different focal mechanisms, reflecting the segmented nature of the Xianshuihe fault. As more high-frequency information has been applied in this study, the absolute location of the fault rupture is better constrained by the near-field strong-motion data. The rupture process of the mainshock correlates well with the spatial distribution of aftershocks, i.e., aftershock activities were relatively weak in the maximum slip area, and strong aftershock activities were distributed in the peripheral regions.  相似文献   

20.
The energy radiated as seismic waves strongly depends on the fault rupture process associated with rupture speed and dynamic frictional mechanisms involved in the fault slip motion.Following McGarr and Fletcher approach,we derived a physics-based relationship of the weighted average fault slip velocity vs apparent stress,rupture speed and static stress drop based on a dynamic circular fault model.The resultant function can be approximately used to bound near-fault ground motion and seismic energy associated with near-fault coseismic deformation.Fault frictional overshoot and undershoot mechanisms governed by a simple slip-weakening constitutive relation are included in our consideration by using dynamic rupture models named as M-and D-models and proposed by Madariaga(1976) and Boatwright.We applied the above function to the 2008 great Wenchuan earthquake and the 1999 Jiji(Chi-Chi) earthquake to infer the near-fault ground motion called slip weighted average particle velocity and obtained that such model-dependent prediction of weighted average ground velocities is consistent to the results derived from the near-fault strong motion observations.Moreover,we compared our results with the results by McGarr and Fletcher approach,and we found that the values of the weighted average particle velocities we obtained for these two earthquakes are generally smaller and closer to the values by direct integration of strong motion recordings of the near-fault particle velocity waveform data.In other words,if this result comes to be true,it would be a straightforward way used to constrain the near-fault ground motion or to estimate source parameters such as rupture speed,static and dynamic stress drops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号