首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
陈代钊 《地质科学》1997,32(4):432-444
贵州西部龙潭组主要含有6种沉积相组合:即浅海沉积、细粒滨岸平原沉积、溢岸沉积、小型河道砂体、叠置河道砂体和煤层。多层叠置砂体一般10-25m厚,2-10km宽,常含海绿石,切入下伏的三角洲平原、滨岸平原和浅海沉积中,被认为是下切谷充填。在龙潭组中共识别出广泛发育的10个层序界面,由此所限定的层序大致相当于4级旋回层序。在这些层序中,准层序或准层序组识别不出,然能识别体系域,层序几乎全由海进体系域(TST)和高位体系域(HST)组成,低位体系域(LST)发育不好。在垂向上,它们又可叠置成3级复合层序,并由低位、海进和高位层序组组成。在低位层序组中,河道下切常冲刷掉下伏层序的全部HST和部分TST,致使其与下伏层序的下切谷充填重合。在海进层序组中,下切作用最弱,具最小砂/泥比值,下切谷充填侧向孤立。高位层序组是低位和海进层序的过渡类型,下切谷充填也趋于孤立。  相似文献   

2.
 贵州西部龙潭组主要含有6种沉积相组合:即浅海沉积、细粒滨岸平原沉积、溢岸沉积、小型河道砂体、叠置河道砂体和煤层。多层叠置砂体一般10-25m厚,2-10km宽,常含海绿石,切入下伏的三角洲平原、滨岸平原和浅海沉积中,被认为是下切谷充填。在龙潭组中共识别出广泛发育的10个层序界面,由此所限定的层序大致相当于4级旋回层序。在这些层序中,准层序或准层序组识别不出,然能识别体系域,层序几乎全由海进体系域(TST)和高位体系域(HST)组成,低位体系域(LST)发育不好。在垂向上,它们又可叠置成3级复合层序,并由低位、海进和高位层序组组成。在低位层序组中,河道下切常冲刷掉下伏层序的全部HST和部分TST,致使其与下伏层序的下切谷充填重合。在海进层序组中,下切作用最弱,具最小砂/泥比值,下切谷充填侧向孤立。高位层序组是低位和海进层序的过渡类型,下切谷充填也趋于孤立。  相似文献   

3.
The post-glacial succession in the Cobequid Bay — Salmon River incised valley contains two sequences, the upper one incomplete. The lower sequence contains only highstand system tracts (HST) deposits which accumulated under microtidal, glacio-marine deltaic conditions. The upper sequence contains two, retrogradationally stacked parasequences. The lower one accumulated in a wave-dominated estuarine environment under micro-mesotidal conditions. It belongs to the lowstand system tract (LST) or early transgressive system tract (TST) depending on the timing and location of the lowstand shoreline, and contains a gravel barrier that has been overstepped and preserved with little modification. The upper parasequence accumulated in the modern, macrotidal estuary, and is assignable to the late TST. Recent, net progradation of the fringing marshes indicates that a new HST has begun. The sequence boundary separating the two sequences was formed by fluvial incision, and perhaps also by subtidal erosion during the relative sea level fall. Additional local erosion by waves and tidal currents occurred during the transgression. The base of the macrotidal sands is a prominent tidal ravinement surface which forms the flooding surface between the backstepping estuarine parasequences. Because fluvial deposition continued throughout the transgression, the fluvial-estuarine contact is diachronous and cannot be used as the transgressive surface. The maximum flooding surface will be difficult to locate in the macrotidal sands, but is more easily identified in the fringing muddy sediments. These observations indicate that: (1) large incised valleys may contain a compound fill that consists of more than one sequence; (2) relative sea level changes determine the stratal stacking patterns, but local environmental factors control the nature of the facies and surfaces; (3) these surfaces may have complex origins, and commonly become amalgamated; (4) designation of the transgressive surface (and thus the LST) is particularly difficult as many of the prominent surfaces in the valley fill are diachronous facies boundaries; and (5) the transgression of complex topography may cause geologically instantaneous changes in tidal range, due to resonance under particular geographical configurations.  相似文献   

4.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

5.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

6.
长江水下三角洲层序地层学研究有助于全面了解长江三角洲地层特征和沉积环境演化模式。通过对长江水下三角洲下切河谷区YD0901和YD0903孔岩心的详细沉积物粒度、特征元素比值(Cl/Ti和Zr/Rb)、沉积相对比分析,恢复了冰后期以来长江水下三角洲层序地层格架。研究区冰后期以来自下而上依次出现河流相、潮汐河流相、河口湾相、浅海相和三角洲相的沉积相序。末次冰期海平面下降,古长江形成下切河谷,古河间地发育硬黏土层,构成五级Ⅰ型层序界面。之后海平面回升,分别于15 cal ka BP和8.0 cal ka BP形成最大海退和最大海侵界面,水下三角洲区域最大海侵发生时间略滞后于平原区,约为7.5 cal ka BP。据此3个层序界面将冰后期地层划分为低位体系域、海侵体系域和高位体系域。钻孔岩心记录揭示了14.8 cal ka BP海侵到达研究区;14.8~13 cal ka BP期间,受MWP-1A冰融水事件影响海平面快速上升,海岸线向陆推进速率可达71.9,km/ka;海退期间各钻孔沉积速率较低,直至2 cal ka BP开始,沉积速率明显增加。  相似文献   

7.
The Lower Tagus Valley in Portugal contains a well-developed valley-fill succession covering the complete Late Pleistocene and Holocene periods. As large-scale stratigraphic and chronologic frameworks of the Lower Tagus Valley are not yet available, this paper describes facies, facies distribution, and sedimentary architecture of the late Quaternary valley fill. Twenty four radiocarbon ages provide a detailed chronological framework. Local factors affected the nature and architecture of the incised valley-fill succession. The valley is confined by pre-Holocene deposits and is connected with a narrow continental shelf. This configuration facilitated deep incision, which prevented large-scale marine flooding and erosion. Consequently a thick lowstand systems tract has been preserved. The unusually thick lowstand systems tract was probably formed in a previously (30,000–20,000 cal BP) incised narrow valley, when relative sea-level fall was maximal. The lowstand deposits were preserved due to subsequent rapid early Holocene relative sea-level rise and transgression, when tidal and marine environments migrated inland (transgressive systems tract). A constant sea level in the middle to late Holocene, and continuous fluvial sediment supply, caused rapid bayhead delta progradation (highstand systems tract). This study shows that the late Quaternary evolution of the Lower Tagus Valley is determined by a narrow continental shelf and deep glacial incision, rapid post-glacial relative sea-level rise, a wave-protected setting, and large fluvial sediment supply.  相似文献   

8.
Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ~3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on reservoir quality evolution in hydrocarbon exploration in such settings.  相似文献   

9.
The mid-Cenomanian Dunvegan Formation represents a delta complex deposited on a foreland basin ramp over about 2 my. The Dunvegan is divided into 10 transgressive–regressive allomembers, labelled J–A in ascending order, each defined by regional marine transgressive surfaces. Parasequences within allomembers show an aggradational to offlapping stacking pattern that reflects alternate generation and removal of accommodation. The upper surfaces of allomembers H–E are incised by extensive valley systems traceable for up to 320 km and over about 50 000 km2. Valley depths range up to 41 m and can change significantly over short distances. However, the average depth of incision (mean 21 m) shows no systematic variation in longitudinal profiles and no evidence of headward shallowing. Valleys are typically 1–2 km wide, but locally widen to about 8 km. Widening is sometimes associated with confluence zones, but elsewhere it is not. Updip reaches of valleys are dominated by cross-bedded fluvial sandstone forming multistorey point-bar deposits. Sandstones contain widespread but uncommon paired carbonaceous drapes recognizable as tidal bundles. Inclined heterolithic stratification is locally well developed at the top of the valley fill. Downdip reaches of valleys, typically within 50 km of the lowstand shoreline, have a sandstone-dominated lower part and, locally, a mud-rich upper portion consisting of a variety of laminated heterolithic facies with a clear tidal signature. These heterolithic deposits may represent central basin, tidal flat, bayhead delta and point-bar environments. Valley filling took place mainly during the transgressive systems tract (TST) when tidally influenced environments migrated upvalley. Semi-diurnal tidal backwater effects extended at least 30 km landward of the regional maximum transgressive marine shoreline. The aggradational late TST and highstand systems tract (HST) includes deltaic and coastal plain deposits comprising lake and anastomosed river deposits that suggest a very low gradient (≈ 1:3000). Delta parasequences of the falling stage systems tract (FSST) offlap seaward and have no equivalent coastal plain deposits. The FSST has an average width of 60 km and an inferred gradient of 1:2500. The upper surfaces of the HST and FSST are extensively incised by valleys. The lowstand systems tract (LST) is subtly aggradational, lacks valleys and is characterized by large delta lobes fed by major distributaries. The width and inferred slope of the FSST, coupled with the thickness of aggradational TST and HST deposits on the coastal plain, suggest a vertical accommodation of about 35 m per transgressive event. About 11 m of this is attributed to isostatic subsidence resulting from water and sediment loads; the residual 24 m is attributed to eustatic rise. This sea-level change is of the same order of magnitude as the valley depths. The length of valleys, however, does not seem to be explicable solely in terms of downstream forcing by sea-level change, and an additional, upstream-forcing mechanism, possibly related to precipitation cycles in the Milankovitch band, might be inferred.  相似文献   

10.
The passive margin Texas Gulf of Mexico Coastal Plain consists of coalescing late Pleistocene to Holocene alluvial–deltaic plains constructed by a series of medium to large fluvial systems. Alluvial–deltaic plains consist of the Pleistocene Beaumont Formation, and post-Beaumont coastal plain incised valleys. A variety of mapping, outcrop, core, and geochronological data from the extrabasinal Colorado River and the basin-fringe Trinity River show that Beaumont and post-Beaumont strata consist of a series of coastal plain incised valley fills that represent 100 kyr climatic and glacio-eustatic cycles.

Valley fills contain a complex alluvial architecture. Falling stage to lowstand systems tracts consist of multiple laterally amalgamated sandy channelbelts that reflect deposition within a valley that was incised below highstand alluvial plains, and extended across a subaerially-exposed shelf. The lower boundary to falling stage and lowstand units comprises a composite valley fill unconformity that is time-transgressive in both cross- and down-valley directions. Coastal plain incised valleys began to fill with transgression and highstand, and landward translation of the shoreline: paleosols that define the top of falling stage and lowstand channelbelts were progressively onlapped and buried by heterolithic sandy channelbelt, sandy and silty crevasse channel and splay, and muddy floodbasin strata. Transgressive to highstand facies-scale architecture reflects changes through time in dominant styles of avulsion, and follows a predictable succession through different stages of valley filling. Complete valley filling promoted avulsion and the large-scale relocation of valley axes before the next sea-level fall, such that successive 100 kyr valley fills show a distributary pattern.

Basic elements within coastal plain valleys can be correlated with the record offshore, where cross-shelf valleys have been described from seismic data. Falling stage to lowstand channelbelts within coastal plain valleys were feeder systems for shelf-phase and shelf-margin deltas, respectively, and demonstrate that falling stage fluvial deposits are important valley fill components. Signatures of both upstream climate change vs. downstream sea-level controls are therefore interpreted to be present within incised valley fills. Signatures of climate change consist of the downstream continuity of major stratigraphic units and component facies, which extends from the mixed bedrock–alluvial valley of the eroding continental interior to the distal reaches, wherever that may be at the time. This continuity suggests the development of stratigraphic units and facies is strongly coupled to upstream controls on sediment supply and climate conditions within hinterland source regions. Signatures of sea-level change are critical as well: sea-level fall below the elevation of highstand depositional shoreline breaks results in channel incision and extension across the newly emergent shelf, which in turn results in partitioning of the 100 kyr coastal plain valleys. Moreover, deposits and key surfaces can be traced from continental interiors to the coastal plain, but there are downstream changes in geometric relations that correspond to the transition between the mixed bedrock–alluvial valley and the coastal plain incised valley. Channel incision and extension during sea-level fall and lowstand, with channel shortening and delta backstepping during transgression, controls the architecture of coastal plain and cross-shelf incised valley fills.  相似文献   


11.
High resolution seismic lines from the inner and mid-shelf of the Durban Bight reveal an unprecedented view of the seismic stratigraphy of the central KwaZulu-Natal uppermost continental margin. Seven units are recognised from the shelf on the basis of their stratal architecture and bounding unconformities. These comprise four incompletely preserved sequences consisting of deposits of the highstand systems tract (Unit B), falling stage systems tracts (Unit C), the transgressive systems tract (Units A, D and G) and lowstand systems tracts (early fill of the incised valleys and strike diachronous prograding reflectors of Unit A). Seismic facies recognised as incised valley fills correspond to the lowstand and transgressive systems tracts. When integrated with published accounts of onshore and offshore lithostratigraphy and local sea level curves, we recognise an Early Santonian transgression (Unit A to Unit B), superimposed by uplift-induced pulses of forced regression. A Late Campanian relative sea level fall (Unit C) followed. Sediments of the Tertiary period are not evident on the Durban Bight shelf except for isolated incised valley fills of Unit D lying within incised valleys of Late Pliocene age. Overlying these are two stages of Pleistocene shoreline deposits of indeterminate age. Erosion concurrent with relative sea level fall towards the last glacial maximum shoreline carved a third set of incised valleys within which sediments of the Late Pleistocene/Holocene have infilled.  相似文献   

12.
The Lower Eocene Ametlla Formation of the Ager Basin, Spanish Pyrenees, is a rapidly deposited shallow marine unit formed in a setting characterized by syn-sedimentary tectonic activity. Mapping of the formation over a distance of 25 km was conducted according to sequence stratigraphical principles with emphasis on facies analysis. Twelve facies, grouped in five facies associations, have been recognized in the Ametlla Formation. The studied succession records a vertical transition from deltaic systems prograding onto a sediment-starved shelf, via estuarine deposits associated with incised valleys, to sandbar complexes in a tidal seaway. In terms of sequence stratigraphy, three scales of genetic sedimentary units were recognized. (1) At the regional scale, elements of two 3rd-order composite sequences (sensu Exxon) have been recognized. These include a 3rd-order highstand sequence set encompassing the lowermost part of the Ametlla Formation and the underlying Passarella Formation, and a 3rd-order transgressive sequence set that constitutes the middle parts of the Ametlla Formation. The sequence sets are separated by an unconformity with up to 35 m of incision that is interpreted as a major sequence boundary. It is argued that the incised valleys associated with this unconformity were infilled during landward-stepping of the shelfal depositional system. Basinwards, the unconformable surface becomes subhorizontal and is overlain by a 2 m thick oyster bed formed in a sediment-starved setting subsequent to flooding of the incised valleys (which still acted as sediment conduits). Sandstones dominate the transgressive sequence set, whereas the highstand sequence set is dominated by siltstones, particularly in the lower part. In the transgressive sequence set, an upward increase in sand content and calibre is observed, relatable to punctuations of the transgressive trend by high-frequency sea-level fluctuations, and to downslope redistribution of sand. (2) At the subregional scale, detailed mapping indicates the presence of five 4th-order sequences. The 4th-order sequence boundaries are associated with sediment bypassing and minimal erosional relief, and were created by forced regressions during periods of relative sea-level fall. Sharp-based sandstones overlying these unconformities are believed to have accumulated during subsequent rise of relative sea-level. Where 4th-order maximum flooding surfaces can be recognized, the sequences may be subdivided into a sandstone-dominated transgressive systems tract and a siltstone-dominated highstand systems tract. (3) At the local scale, 2–9 5th-order parasequences are present within the 4th-order sequences. Superimposed parasequences are separated by flooding surfaces characterized by bioclastic accumulations, pervasive burrowing and extensive calcite cementation. The parasequences are commonly stacked in a landward-stepping manner.  相似文献   

13.
塔里木盆地巴楚及塔中地区二叠系层序地层学分析   总被引:3,自引:2,他引:1  
通过钻井、测井以及野外剖面等资料的综合分析,塔里木盆地巴楚及塔中地区二叠系可识别出6个层序边界.除B4为Ⅱ型层序边界外,其他各层序边界均为Ⅰ型层序边界,并以侵蚀下切为特征.根据6个层序边界可将二叠系划分为5个三级层序,这些层序均符合Vail经典层序地层学模式.SQ4层序可识别出湖侵体系域和高位体系域,SQ1、SQ2、SQ3、SQ5层序可识别出低位体系域、海(湖)侵体系域和高位体系域.低位体系域为河流相性质的侵蚀沟谷充填沉积,海(湖)侵体系域为滨浅湖和半深湖沉积,高位体系域为半深湖-滨浅湖以及三角洲沉积,另外,SQ3层序高位体系域上部还发育火山岩.河流相侵蚀沟谷充填沉积和三角洲沉积主要分布在塔东隆起西部斜坡上.  相似文献   

14.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

15.
松辽盆地白垩系非海相沉积层序模式   总被引:22,自引:4,他引:18  
本文阐述了层序地层学在松辽盆地应用的主要依据,总结了白垩系层序地层的基本特征。归纳出层序边界的识别标志。在岩芯中层序边界附近见古土壤或根土层、河床滞留砾岩、水进滞留砾岩、水下滑塌、钙质结核及相突变现象,层序边界之上覆盖风暴岩、三角洲前缘席状流沉积、冲积扇、鲕粒灰岩、生物屑灰岩、物性良好的砂岩和火山岩。层序边界的测井响应特征为退积/前积渐变型、退积/加积突变型、加积/前积型、前积/前积型等。在地震剖面上,层序边界处见削截、上超、顶超等反射结构。根据地震、测井和岩芯资料的综合解释,重点论述了主要含油层系的体系域特征,由此提炼出松辽盆地白垩系层序地层理想模式。低水位体系域由滞后平衡表面之下的冲积扇、河口砂坝、“下切谷”充填物、滑塌、碎屑流沉积、浊积岩及三角洲前缘席状流沉积组成;水进体系域发育风暴岩、砂滩、砂坝、三角洲前缘席状砂、叠层石和碳酸盐浅滩;典型的密集段形成于海泛期,赋存于水进体系域顶部和高水位体系域底部;高水位体系域主要有三角洲、扇三角洲和曲流河体系组成。经对比,松辽盆地与海相基准面变化的二级旋回趋近,但三级旋回高于后者。  相似文献   

16.
Excellent exposures of thick, multistorey, fluvial deposits from the deltaic Atane Formation on south‐east Nuussuaq, central West Greenland, show the architecture of up to 100 m thick continuously aggrading fluvial depositional complexes. The succession comprises vertically stacked channel belt sandstones separated by thin floodplain deposits, with little to no incision between storeys. Architectural elements and palaeocurrent patterns of channel deposits indicate deposition in large, relatively stable, low‐sinuosity rivers, probably located within an incised valley. Gradual transitions from channel to floodplain deposits accompanied by a gradual change from floodplain to spillover sand suggest avulsion on the floodplain as a possible mechanism for the vertically alternating channel and floodplain deposits. Despite its relative proximity to contemporaneous sea‐level (ca 35 km upstream from the palaeo‐shoreline) the depositional complex is entirely non‐marine. The aggrading nature of the deposits suggests a continuously rising base level coupled with a high and steady sediment supply. Vertical alternations between floodplain and channel deposits may be forced by subtle interruptions in this balance or autocyclic mechanisms on the floodplain. This study provides an example of aggrading lowstand/non‐marine transgressive systems tract deposits.  相似文献   

17.
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3–6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences.

The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability.

This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.  相似文献   


18.
番禺低隆起是珠江口盆地重要的含油气区。区内的韩江组可划分为3个三级层序,其顶底界面均以削蚀和上超不整合及其对应的整合为界;依据四级旋回的海泛面可进一步划分出11个四级层序或体系域。三级层序SQhj1上部的2个四级层序发育两套具有前积结构的三角洲沉积,SQhj2的低位域广泛发育下切谷充填和低水位楔。结合钻井约束的地震沉积学和古地貌学分析,揭示了四级层序沉积相的平面分布和演化。高位域三角洲前缘砂坝和水下水道、低位下切水道及低位楔三角洲、海滩砂坝砂体等为区内主要的储集砂体,它们与其上覆的海进泥岩形成良好的储盖组合,沿上超斜坡带、下斜坡或坡折带可形成岩性地层圈闭。  相似文献   

19.
Mio-Pliocene deposits of the forebulge–backbulge depozones of the Beni-Mamore foreland Basin indicate tidally to fluvially dominated sedimentation. Seven facies assemblages have been recognized: FAA–FAG. FAA represents a distal bottom lake assemblage, FAB and FAD are interpreted as tidal flat deposits, FAC and FAG are interpreted as fluvial systems, FAE sediments are deposited in a subtidal/shoreface setting, and FAG represents a meandering fluvial system. The identification of stratigraphic surfaces (SU, MFS, and MRS) and the relationship among the facies assemblages permit the characterization of several systems tracts: a falling-stage systems tract (FSST) followed by a lowstand systems tract (LST), a transgressive systems tract (TST), and a highstand systems tract (HST). The FSST and LST may have been controlled by the uplift of the Beni-Mamore forebulge, whereas TST may result from a quiescent stage in the forebulge. Subaerial unconformity two (SU2) records the passage from a tide-influenced depositional system to a fully continental depositional system. The Miocene tidal-influenced deposits in the Beni–Mamore Basin suggest that it experienced a connection, either with the South Atlantic Ocean or the Caribbean Sea or both.  相似文献   

20.
渤海湾盆地辽中凹陷旅大16油田东营组东三段是目前勘探开发的主力含油层系。综合三维地震资料、录井、测井及岩心资料,在井—震结合、层序地层学研究基础上,利用古地貌研究、岩心相、测井相、地震相和振幅属性切片分析,明确了东营组层序格架内沉积相类型、沉积展布特征及沉积演化规律。应用Vail的经典层序地层学理论,将东三段划分为一个三级层序,其中可识别出低位体系域、湖侵体系域和高位体系域。低位体系域沉积期,辽西低凸起大面积暴露遭受剥蚀,为研究区提供碎屑沉积物,发育近源的扇三角洲及重力流沉积体系。扇三角洲砂体以灰色中砂岩和细砂岩为主,河床滞留沉积、波状层理和生物扰动构造十分发育;高位体系域时期,辽西低凸起被淹没,供源能力减弱,研究区发育较远源的辫状河三角洲前缘沉积,且伴生重力流沉积。其中辫状河三角洲前缘水下分流河道砂体以细—中砂岩为主,见块状构造和楔状交错层理。重力流沉积体系主要为滑塌湖底扇及砂质碎屑流沉积,岩心观察可见细砂岩中发育滑塌变形构造,及漂浮状的砾石和泥岩撕裂屑。研究区沉积演化过程与地貌演化密切相关,且断裂体系对砂体展布具有控制作用,重力流沉积发育于断裂坡折前方。显然,明确沉积相类型、沉积展布特征及沉积演化规律,可为进一步油气勘探开发提供地质依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号