首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   


2.
Experiments with synthetic starting materials of muscovite, phlogopite, zoisite, kyanite and quartz were performed in the pressure temperature range 10–25 kbar, 640–780° C under water excess conditions. The reaction muscovite+zoisite+quartz+vapor=liquid+kyanite was bracketed at 10.5 kbar/689–700° C, 15.5 kbar/709–731° C and 20 kbar/734–745° C. The equivalent reaction in the Mg-bearing system muscovitess +zoisite+quartz+vapor=liquid+kyanite+phlogopitess lies at the same temperature around 10 kbar and approximately 10° C higher around 20 kbar, compared with the Mg-free reaction. At slightly higher temperatures formation of melt and tremolitess was reversibly observed from the assemblage phlogopitess+zoisite +kyanite+quartz around 10.5 kbar/690–710° C, 15.5 kbar/720–750° C and 20.5 kbar/745–760° C. In the subsolidus region, the reaction muscovitess+talcss+ tremolitess=phlogopitess+zoisite+quartz+vapor were located in the range 700° C/16.7–19.0 kbar and 740° C/19.7–20.8 kbar. From these data, a wedge shaped stability field of phlogopitess+zoisite+quartz appears with a high P, T termination around 21 kbar/755° C. Muscovite+tremolite+talc or kyanite comes in at higher pressures. These phase relations are in qualitative accord with petrographic observations from high pressure metamorphic areas. Formation and crystallization of melts in rocks of a wide compositional range involving zoisite/epidote has been ascribed to relatively high pressures and is consistent with experimentally determined stability fields in the simplified KCMASH system.  相似文献   

3.
Abstract Paragonite in textural equilibrium with garnet, omphacite and kyanite is found in two eclogites in the ultrahigh-pressure metamorphic terrane in Dabie Shan, China. Equilibrium reactions between paragonite, omphacite and kyanite indicate a pressure of about 19 kbar at c . 700° C. However, one of the paragonite eclogites also contains clear quartz pseudomorphs after coesite as inclusions in garnet, suggesting minimum pressures of 27 kbar at the same temperature. The disparate pressure estimates from the same rock suggest that the matrix minerals in the ultrahigh-pressure eclogites have recrystallized at lower pressures and do not represent the peak ultrahigh-pressure assemblages. This hypothesis is tested by calibrating a garnet + zoisite/clinozoisite + kyanite + quartz/coesite geobarometer and applying it to the appropriate eclogite facies rocks from ultrahigh- and high-pressure terranes. These four minerals coexist from 10 to 60 kbar and in this wide pressure range the grossular content of garnet reflects the equilibrium pressure on the basis of the reaction zoisite/clinozoisite = grossular + kyanite + quartz/coesite + H2O. The results of the geobarometer agree well with independent pressure estimates from eclogites from other orogenic belts. For the paragonite eclogites in Dabie Shan the geobarometer indicates pressures in the quartz stability field, confirming that the former coesite-bearing paragonite-eclogite has re-equilibrated at lower pressures. On the other hand, garnets from other coesite-bearing but paragonite-free kyanite-zoisite eclogites show a very wide variation in grossular content, corresponding to a pressure variation from coesite into the quartz field. This wide variation, partly due to a rimward decrease in grossular component in garnet, is caused by partial equilibration of the mineral assemblage during the exhumation.  相似文献   

4.
The Thor-Odin dome region of the Shuswap metamorphic core complex, British Columbia, contains migmatitic rocks exhumed from the deep mid-crust of the Cordilleran orogen. Extensive partial melting occurred during decompression of the structurally deepest rocks, and this decompression path is particularly well recorded by mafic boudins of silica-undersaturated, aluminous rocks. These mafic boudins contain the high-temperature assemblages gedrite+cordierite+spinel+corundum+kyanite/sillimanite±sapphirine±högbomite and gedrite+cordierite+spinel+corundum+kyanite/sillimanite+garnet±staurolite (relict)±anorthite. The boudins are interlayered with migmatitic metapelitic gneiss and orthogneiss in this region.

The mineral assemblages and reaction textures in these rocks record decompression from the kyanite zone (P>8–10 kbar) to the sillimanite–cordierite zone (P<5 kbar) at T750 °C, with maximum recorded temperatures of 800 °C. Evidence for high-temperature decompression includes the partial replacement of garnet by cordierite, the partial to complete replacement of kyanite by corundum+cordierite+spinel (hercynite)±sapphirine±högbomite symplectite, and the replacement of some kyanite grains by sillimanite. Kyanite partially replaced by sillimanite, and sillimanite with coronas of cordierite±spinel are also observed in the associated metapelitic rocks.

Partial melt from the surrounding migmatitic gneisses has invaded the mafic boudins. Cordierite reaction rims occur where minerals in the boudins interacted with leucocratic melt. When combined with existing structural and geochronologic data from migmatites and leucogranites in the region, these petrologic constraints suggest that high-temperature decompression was coeval with partial melting in the Thor-Odin dome. These data are used to evaluate the relationship between partial melting of the mid-crust and localized exhumation of deep, hot rocks by extensional and diapiric processes.  相似文献   


5.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

6.
Chromian kyanites with a maximum content of 2.88 wt.% Cr2O3 occur in metachert and amphibolite from the Southern Alps, New Zealand. The presence of the whiteschist assemblage kyanite-talc, together with kyanite-zoisite assemblages in calc silicate bands imply high pressure metamorphism, with climactic conditions of approximately 10 kb at 650°–700° C. Mylonitization caused by a change to oblique-slip movements on the Alpine Fault is succeeded by retrograde alteration of kyanite-bearing assemblages. Kyanite is pseudomorphed by Cr-margarite-fuchsite-Cr-zoisite assemblages in metachert and by less chromian margarite and zoisite in amphibolite. Contemporaneously hornblende and phlogopite break down to chlorite. Subsequently the metachert pseudomorphs are mantled by muscovite and those in amphibolite by anorthite and chromite. The breakdown of margarite and zoisite to anorthite implies decompression under a low thermal gradient, compatible with almost isothermal uplift on the Alpine Fault. Late stage retrograde products include fibrous kyanite (probably forming by recrystallization of primary alluminosilicate) and scapolite (possibly orginating through interaction of Cl-bearing fluids in a geothermal system).In the Southern Alps there is a significant uplift following the Cretaceous Rangitata Orogeny, probably in the order of 11–15 km. However, the bulk of the uplift, approximately 25 km, took place in the past 10 m.y. during Kaikoura Orogenic uplift on the Alpine Fault. It is during this latest and continuing phase of uplift that the sequence of kyanite alteration reactions occurred.  相似文献   

7.
The beginning of melting in the system Qz-Or-Ab-An-H2 O was experimentally reversed in the pressure range kbar using starting materials made up of mixtures of quartz and synthetic feldspars. With increasing pressure the melting temperature decreases from 690° C at 2 kbar to 630° C at 17 kbar in the An-free alkalifeldspar granite system Qz-Or-Ab-H2O. In the granite system Qz-Or-Ab-An-H2O the increase of the solidus temperature with increasing An-content is only very small. In comparison to the alkalifeldspar granite system the solidus temperature increases by 3° C (7° C) if albite is replaced by plagioclase An 20 (An 40). The difference between the solidus temperatures of the alkalifeldspar granite system and of quartz — anorthite — sanidine assemblages (system Qz-Or-An-H2O) is approximately 50° C. With increasing water pressures plagioclase and plagioclase-alkalifeldspar assemblages become unstable and are replaced by zoisite+kyanite+quartz and zoisite+muscovite-paragonitess +quartz, respectively. The pressure stability limits of these assemblages are found to lie between 6 and 16 kbar at 600° C. At high water pressures (10–18 kbar) zoisite — muscovite — quartz assemblages are stable up to 700 and 720° C. The solidus curve of this assemblage is 10–20° C above the beginning of melting of sanidine — zoisite — muscovite — quartz mixtures. The amount of water necessary to produce sufficient amounts of melt to change a metamorphic rock into a magmatic looking one is only small. In case of layered migmatites it is shown that 1 % of water (or even less) is sufficient to transform portions of a gneiss into (magmatic looking) leucosomes. High grade metamorphic rocks were probably relatively dry, and anatectic magmas of granitic or granodioritic composition are usually not saturated with water.  相似文献   

8.
D. A. Carswell  R. N. Wilson  M. Zhai 《Lithos》2000,52(1-4):121-155
As is typical of ultra-high pressure (UHP) terrains, the regional extent of the UHP terrain in the Dabieshan of central China is highly speculative, since the volume of eclogites and paragneisses preserving unequivocal evidence of coesite and/or diamond stability is very small. By contrast, the common garnet (XMn=0.18–0.45)–phengite (Si=3.2–3.35)–zoned epidote (Ps38–97)–biotite–titanite–two feldspars–quartz assemblages in the more extensive orthogneisses have been previously thought to have formed under low PT conditions of ca. 400±50°C at 4 kbar. However, certain orthogneiss samples preserve garnets with XCa up to 0.50, rutile inclusions within titanite or epidote and relict phengite inclusions within epidote with Si contents p.f.u. of up to 3.49 — overlapping with the highest values (3.49–3.62) recorded for phengites in samples of undoubted UHP schists. These and other mineral composition features (such as A-site deficiencies in the highest Si phengites, Na in garnets linked to Y+Yb substitution and Al F Ti−1 O−1 substitution in titanites) are taken to be pointers towards the orthogneisses having experienced a similar metamorphic evolution to the associated UHP schists and eclogites. Re-evaluated garnet–phengite and garnet–biotite Fe/Mg exchange thermometry and calculated 5 rutile+3 grossular+2SiO2+H2O=5 titanite+2 zoisite equilibria indicate that the orthogneisses may indeed have followed a common subduction-related clockwise PT path with the UHP paragneisses and eclogites through conditions of Pmax at ca. 690°C–715°C and 36 kbar to Tmax at ca. 710°C–755°C and 18 kbar, prior to extensive re-crystallisation and re-equilibration of these ductile orthogneisses at ca. 400°C–450°C and 6 kbar. The consequential conclusion, that it is no longer necessary to resort to models of tectonic juxtapositioning to explain the spatial association of these Dabieshan orthogneisses with undoubted UHP lithologies, has far-reaching implications for the interpretation of controversial gneiss–eclogite relationships in other UHP metamorphic terrains.  相似文献   

9.
Jrg Hermann 《Lithos》2003,70(3-4):163-182
The peak metamorphic conditions of subducted continental crust in the Dora-Maira massif (Western Alps) have been revised by combining experimental results in the KCMASH system with petrologic information from whiteschists. Textural observations in whiteschists suggest that the peak metamorphic assemblage garnet+phengite+kyanite+coesite±talc originates from the reaction kyanite+talc↔garnet+coesite+liquid. In the experimentally determined petrogenetic grid, this reaction occurs above 45 kbar at 730 °C. At lower pressures, talc reacts either to orthopyroxene and coesite or, together with phengite, to biotite, coesite and kyanite. The liberated liquid contains probably similar amounts of H2O and dissolved granitic components. The composition of the liquid in the whiteschists at peak metamorphic conditions, a major unknown in earlier studies, was probably very similar to the liquid composition produced in the experiments. Therefore, the experimentally determined petrogenetic grid represents a good model for the estimation of the peak metamorphic conditions in whiteschists. Experimentally determined Si-isopleths for phengite further constrain peak pressures to 43 kbar for the measured Si=3.60 of phengite in the natural whiteschists. All these data provide evidence that the whiteschists reached diamond-facies conditions.

The fluid-absent equilibrium 4 kyanite+3 CELADONITE=4 coesite+3 muscovite+pyrope has been calibrated on the basis of garnet and phengite compositions in the experiments and serves as a geothermobarometer for ultra-high-pressure (UHP) metapelites. For graphite-bearing metapelites and kyanite–phengite eclogites, forming the country rocks of the whiteschists, peak metamorphic pressures of about 44±3 kbar were calculated from this barometer for temperatures of 750 °C estimated from garnet–phengite thermometry. Therefore, the whole ultra-high-pressure unit of the Dora-Maira massif most likely experienced peak metamorphic conditions in the diamond stability field. While graphite is common in the metapelites, diamond has not been found so far. The absence of metamorphic microdiamonds might be explained by the low temperature of metamorphism, the absence of a free fluid phase in the metapelites and a short residence time in diamond-facies conditions resulting in kinetic problems in the conversion of graphite to diamond.  相似文献   


10.
Metasediments in the southern Grossvenediger area (Tauern Window, Austria) were studied along a cross-section through rocks of increasing metamorphic grade from the margin of the Tauern Window in the south to the base of the Upper Schieferhülle, including the Eclogite Zone, in the north. In the southern part of the cross-section there is no evidence for a pre-late Alpine metamorphic history in the form of high-pressure relics or pseudomorphs. Mineral assemblages are characterized by the stability of tremolite + calcite, biotite + calcite and biotite + chlorite + calcite. In the northern part a more complete Alpine metamorphic evolution is preserved. Primary high-pressure assemblages are dolomite + quartz, tremolite + zoisite, zoisite + dolomite + quartz + phengite I and probably tremolite + dolomite + phengite I. Secondary, post-kinematic assemblages [tremolite + calcite, talc + calcite, phengite II + chlorite + calcite (+ quartz), biotite + chlorite + calcite, biotite + zoisite + calcite] formed as a result of the dominant late Alpine metamorphic overprint. The occurrence of biotite + zoisite + calcite is confined to the northernmost area and defines a biotite–zoisite–calcite isograd. P–T estimates based on standard thermobarometric techniques and on stability relationships of tremolite + calcite + dolomite + quartz and zoisite give consistent results. P–T conditions of the main Tertiary metamorphic overprint were 525° C, P= 7.5 ± 1 kbar in the northern part of the cross-section. The southern part was metamorphosed at lower temperatures of 430–470° C. The Si-content of phengites from this area is almost as high as that of phengites from the Eclogite Zone (Simax= 3.4 pfu). Pressures > 10 kbar at 420° C are suggested by phengite barometry according to Massone & Schreyer (1987). In the absence of high-pressure relics or pseudomorphs, these phengites, which lack late Alpine re-equilibration, are the only record that rocks of the southern part probably also experienced an early non-eclogitic high-pressure metamorphism.  相似文献   

11.
The most recent of two metamorphic events (M2) in the Snow Peakarea caused progressive changes in mineral parageneses in peliticrocks ranging from chlorite-biotite to kyanite grade. Systematicpartitioning of elements between coexisting phases indicatesa close approach to equilibrium during M2. Temperature estimatesfor M2 range from 440 ?C in the chlorite-biotite zone to 565?C in the kyanite zone. Coexistence of kyanite, garnet, ilmenite,and quartz places an upper pressure limit of approximately 60kb, and an upper temperature limit at the kyanite-sillimaniteboundary. Equilibrium of garnet, kyanite, plagioclase, and quartzindicates that total pressure of equilibration of kyanite-bearingassemblages was approximately 6 kb. Pressure estimates basedon equilibrium of garnet, muscovite, biotite, and plagioclaseindicate a pressure gradient between garnet and lower staurolitezone samples, which equilibrated at approximately 3? 5 kb, andupper staurolite to kyanite zone samples, which equilibratedat 5? 5 kb. Equilibrium of paragonite component of muscovitewith plagioclase, kyanite and quartz, distribution of speciesin C-O-H fluids in equilibrium with graphite, and the presenceof zoisite in adjacent calc-silicate rocks indicate that themetamorphic fluid in kyanite-bearing assemblages contained 65-90mole per cent H2O. However, the experimentally calibrated equilibriumof staurolite, quartz, garnet, and kyanite can be reconciledwith estimated temperature only if XH2O in the fluid was verylow ( 33 mole per cent). T-X(Fe-Mg) relations among chlorite, biotite, garnet, staurolite,kyanite, muscovite and quartz are calculated at 6 kb on thebasis of 3 independent Fe-Mg exchange equilibria: garnet-biotite,chlorite-biotite (empirical, this study), garnet-staurolite(empirical, this study), and three independent net transferequilibria. Alternative sets of data for Mg-chlorite and Fe-stauroliteare evaluated by comparing observed and calculated changes inmineral paragenesis and mineral composition with grade. Chloritedata from Helgeson et al., 1978 give T-X(Fe-Mg) relations consistentwith trends observed in these rocks, whereas data derived frombreakdown of clinochlore and clinochlore + dolomite do not.Calculation of T-X(Fe-Mg) relations consistent with observationsrequires lower values of and than those consistent with experiments on the breakdown of staurolite+quartz.  相似文献   

12.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   

13.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

14.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

15.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


16.
New evidence for high-pressure, eclogite facies metamorphism in the crystalline basement of the Tisza Megaunit (southern Hungary) is reported. The retrogressed mafic eclogite forms a small lens in the orthogneiss and it was found in the borehole near Jánoshalma. The carbonated eclogite contains the peak metamorphic assemblage omphacite + garnet + phengite + kyanite + clinozoizite + rutile + K-feldspar + quartz. Omphacite (Xjd0.40–0.41Xdio0.52–0.53Xhd0.05Xaug1.55–2.85) occurs in the matrix and as inclusions in garnet (Xpy0.37–0.38Xgrs0.21–0.22Xalm0.39–0.40Xsps0–0.01Xadr0–0.01) and kyanite. Thermobarometry based on net-transfer reactions between garnet, omphacite, kyanite and phengite yields PT conditions of 710 ± 10 °C and 2.6 ± 0.75 GPa. Retrogression during decompression is manifested by formation of symplectites; the most typical are diopside + plagioclase after omphacite, corundum + spinel + plagioclase after kyanite and biotite + plagioclase after phengite. Carbonatization along the veins of the retrogressed eclogite was probably coeval with formation of these symplectites. At places where carbonate is absent the rock was completely hydrated and retrogressed down to the greenschist facies with the development of actinolite. Similar eclogites together with abundant orthogneisses occur mainly in the eastern parts of the Tisza Megaunit, suggesting the existence of an ancient (possibly Variscan) subduction/accretionary complex.  相似文献   

17.
The stability and phase relations of phengitic muscovite in a metapelitic bulk composition containing a mixed H2O+CO2 fluid were investigated at 6.5–11 GPa, 750–1050°C in synthesis experiments performed in a multianvil apparatus. Starting material consisted of a natural calcareous metapelite from the coesite zone of the Dabie Mountains, China, ultrahigh-pressure metamorphic complex that had experienced peak metamorphic pressures greater than 3 GPa. The sample contains a total of 2.1 wt.% H2O and 6.3 wt.% CO2 bound in hydrous and carbonate minerals. No additional fluid was added to the starting material. Phengite is stable in this bulk composition from 6.5 to 9 GPa at 900°C and coexists with an eclogitic phase assemblage consisting of garnet, omphacite, coesite, rutile, and fluid. Phengite dehydrates to produce K-hollandite between 8 and 11 GPa, 750–900°C. Phengite melting/dissolution occurs between 900°C and 975°C at 6.5–8 GPa and is associated with the appearance of kyanite in the phase assemblage. The formation of K-hollandite is accompanied by the appearance of magnesite and topaz-OH in the phase assemblage as well as by significant increases in the grossular content of garnet (average Xgrs=0.52, Xpy=0.19) and the jadeite content of omphacite (Xjd=0.92). Mass balance indicates that the volatile content of the fluid phase changes markedly at the phengite/K-hollandite phase boundary. At P≤8 GPa, fluid coexisting with phengite appears to be relatively CO2-rich (XCO2/XH2O=2.2), whereas fluid coexisting with K-hollandite and magnesite at 11 GPa is rich in H2O (XCO2/XH2O=0.2). Analysis of quench material and mass balance calculations indicate that fluids at all pressures and temperatures examined contain an abundance of dissolved solutes (approximately 40 mol% at 8 GPa, 60 mol% at 11 GPa) that act to dilute the volatile content of the fluid phase. The average phengite content of muscovite is positively correlated with pressure and ranges from 3.62 Si per formula unit (pfu) at 6.5 GPa to 3.80 Si pfu at 9 GPa. The extent of the phengite substitution in muscovite in this bulk composition appears to be limited to a maximum of 3.80–3.85 Si pfu at P=9 GPa. These experiments show that phengite should be stable in metasediments in mature subduction zones to depths of up to 300 km even under conditions in which aH2O1. Other high-pressure hydrous phases such as lawsonite, MgMgAl-pumpellyite, and topaz-OH that may form in subducted sediments do not occur within the phengite stability field in this system, and may require more H2O-rich fluid compositions in order to form. The wide range of conditions under which phengite occurs and its participation in mixed volatile reactions that may buffer the composition of the fluid phase suggest that phengite may significantly influence the nature of metasomatic fluids released from deeply subducted sediments at depths of up to 300 km at convergent plate boundaries.  相似文献   

18.
The Shuanghe ultrahigh-pressure (UHP) slab in the Dabie Mountains consists of layered coesite-bearing eclogite, jadeite quartzite, marble and biotite gneiss, and is fault bounded against hosting orthogneiss. Representative assemblages of eclogite are Grt+Omp+Coe+Rt±Ky±Phn±Mgs; it formed at P>27 kbar and 680–720±50 °C. During exhumation, these UHP rocks experienced multistage retrograde metamorphism. Coesite was overprinted by quartz aggregates, phengite by biotite±muscovite and rutile by titanite. Garnet was successively replaced by a thin rim of Amp, Amp+Pl, and Amp+Ep±Bt+Pl (minor). Omphacite and kyanite were replaced by Amp+Pl±Cpx (or ±Bt) and by Zo+Pl+Ms±Mrg±Bt, respectively. Secondary calcite occurs as irregular pockets in some layers. An outcrop near the UHP slab border is composed of 20 thin, concordant layers of foliated eclogites, amphibolite and gneissic rocks of variable bulk composition. These layers exhibit mineral assemblages and textures transitional from less altered through extensively retrograded eclogite to gneissic rock of low-amphibolite facies through hydration, metasomatism and recrystallization. Retrograde metamorphism has caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions. Retrograde metamorphism of variable extent may be attributed to selective infiltration of retrograde fluids of CO2-rich and low-salinity aqueous, intensity of deformation and mineral resistance to alteration. The fluid phase for retrogression may have occurred either as discontinuous flow along grain boundaries in completely retrograded eclogites, and/or as isolated pockets in extensive or less altered eclogite layers.  相似文献   

19.
Abstract In the Su-Lu ultrahigh- P terrane, eastern China, many coesite-bearing eclogite pods and layers within biotite gneiss occur together with interlayered metasediments now represented by garnet-quartz-jadeite rock and kyanite quartzite. In addition to garnet + omphacite + rutile + coesite, other peak-stage minerals in some eclogites include kyanite, phengite, epidote, zoisite, talc, nyböite and high-Al titanite. The garnet-quartz-jadeite rock and kyanite quartzite contain jadeite + quartz + garnet + rutile ± zoisite ± apatite and quartz + kyanite + garnet + epidote + phengite + rutile ± omphacite assemblages, respectively. Coesite and quartz pseudomorphs after coesite occur as inclusions in garnet, omphacite, jadeite, kyanite and epidote from both eclogites and metasediments. Study of major elements indicates that the protolith of the garnet-quartz jadeite rock and the kyanite quartzite was supracrustal sediments. Most eclogites have basaltic composition; some have experienced variable 'crustal'contamination or metasomatism, and others may have had a basaltic tuff or pyroclastic rock protolith.
The Su-Lu ultrahigh- P rocks have been subjected to multi-stage recrystallization and exhibit a clockwise P-T path. Inclusion assemblages within garnet record a pre-eclogite epidote amphibolite facies metamorphic event. Ultrahigh- P peak metamorphism took place at 700–890° C and P >28 kbar at c . 210–230 Ma. The symplectitic assemblage plagioclase + hornblende ± epidote ± biotite + titanite implies amphibolite facies retrogressive metamorphism during exhumation at c . 180–200 Ma. Metasedimentary and metamafic lithologies have similar P-T paths. Several lines of evidence indicate that the supracrustal rocks were subducted to mantle depths and experienced in-situ ultrahigh- P metamorphism during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   

20.
Abstract In pelites of the central Menderes Massif, albite and oligoclase with only slight chemical zoning coexist in apparent textural equilibrium in the garnet zone, staurolite zone, and staurolite + kyanite transition zone. The metamorphic temperature range is estimated as approximately 440–550°C (from the Hodges-Spear calibration of the garnet-biotite geo-thermometer), or 440–500°C (Ganguly-Saxena calibration). While oligoclase composition at the peristerite gap changes from An22 to An14, albite also becomes more sodic (An1,5–An0.6). The slope of the albite limb is thus the reverse of that reported in other areas, and may not be a true equilibrium feature. Occurrence of kyanite, at temperatures below the crest of the gap, is due to low water activity in the presence of graphite: a H2o is estimated at approximately 0.1–0.2 from the Na content of muscovite coexisting with albite + kyanite + quartz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号