首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987114000267   总被引:6,自引:6,他引:0  
Habitable Trinity is a newly proposed concept of a habitable environment.This concept indicates that the coexistence of an atmosphere(consisting largely of C and N),an ocean(H and O).and a landmass(supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve.The life body consists of C,0,H,N and other various nutrients,and therefore,the presence of water,only,is not a sufficient condition.Habitable Trinity environment must be maintained to supply necessary components for life body.Our Habitable Trinity concept can also be applied to other planets and moons such as Mars,Europa,Titan,and even exoplanets as a useful index in the quest for life-containing planetary bodies.  相似文献   

2.
The presence of natural voids and cavities in subsurface karstic limestones causes severe problem for civil engineering and environmental management.The presence of such features hinders the extension of urbanizations particularly in the new metropolitan.The eastern part of Saudi Arabia contains various types of karstic limestone,sinkholes,solution cavities and voids.In this context,geophysical methods particularly electrical resistivity technique is used as a cost-effective solution for investigating subsurface caves,voids,and shallow weathered zones.2-D electrical resistivity data sets have been acquired along seven profiles in the new urbanization at Al Hassa area.Data processing has been carried out taking into consideration the response of synthetic models,which simulates physical models of the most common karstic features in the area.The results are very useful to determine the extension of shallow weathered zones and to locate different cavities underneath them.The hard limestone bedrock can also be detected and traced along the surveyed profiles.  相似文献   

3.
The Musgrave Province developed at the nexus of the North,West and South Australian cratons and its Mesoproterozoic evolution incorporates a 100 Ma period of ultra-high temperature(UHT) metamorphism from ca.1220 to ca.1120 Ma.This was accompanied by high-temperature A-type granitic magmatism over an 80 Ma period,sourced in part from mantle-derived components and emplaced as a series of pulsed events that also coincide with peaks in UHT metamorphism.The tectonic setting for this thermal event(the Musgrave Orogeny) is thought to have been intracontinental and the lithospheric architecture of the region is suggested to have had a major influence on the thermal evolution.We use a series of two dimensional,fully coupled thermo-mechanical-petrological numerical models to investigate the plausibility of initiating and prolonging UHT conditions under model setup conditions appropriate to the inferred tectonic setting and lithospheric architecture of the Musgrave Province.The results support the inferred tectonic framework for the Musgrave Orogeny,predicting periods of UHT metamorphism of up to 70 Ma,accompanied by thin crust and extensive magmatism derived from both crustal and mantle sources.The results also appear to be critically dependent upon the specific location of the Musgrave Province,constrained between thicker cratonic masses.  相似文献   

4.
During the last decades, several integrated studies of Tethyan Jurassic/Cretaceous boundary sections from different countries were published with the objective to indicate problems for the selection of biological, chemical or physical markers suitable for identification of the Jurassic/Cretaceous boundary e the only system boundary within the Phanerozoic still not fixed by GSSP. Drawing the boundary between the Jurassic and Cretaceous systems is a matter of global scale discussions. The problem of proposing possible J/K boundary stratotypes results from lack of a global index fossils, global sea level drop, paleogeographic changes causing development of isolated facies areas, as well as from the effect of Late Cimmerian Orogeny. This contribution summarizes and comments data on J/K boundary interval obtained from several important Tethyan sections and shows still existing problems and discrepancies in its determination.  相似文献   

5.
Convective heat transfer associated with the circulation of pore-fluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high.In order to understand the process of Sn-polymetallic mineralization in the Dachang ore district of Guangxi,a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district.On the basis of related geological,tectonic and geophysical constraints,a computational model was established.It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district.The related simulation results have indicated that:(1) permeable fault zones in the Dachang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale;and(2) the pore-fluid flow can affect the salinity distribution.This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.  相似文献   

6.
A synthesis of the petrological characters of granulite facies rocks that contain equilibrium sapphirine + quartz assemblage from two localities (Tonagh Island (TI) and Priestley Peak (PP)) in the Napier Complex,East Antarctica,provides unequivocal evidence for extreme crustal metamorphism possibly associated with the collisional orogeny during Neoarchean.The reaction microstructures associated with sapphirine + quartz vary among the samples,probably suggesting different tectonic conditions during the metamorphic evolution.Sapphirine and quartz in TI sample were probably in equilibrium at the peak stage,but now separated by corona of Grt + Sil + Opx suggesting near isobaric cooling after the peak metamorphism,whereas the Spr + Qtz + Sil + Crd + Spl assemblage replaces garnet in PP sample suggesting post-peak decompression.The application of mineral equilibrium modeling in NCKFMASHTO system demonstrated that Spr + Qtz stability is lowered down to 930 ℃ due to small Fe3+ contents in the rocks (mole Fe2O3/(FeO + Fe2O3) =0.02).The TI sample yields a peak p-T range of 950-1100 ℃ and 7.5-11 kbar,followed by cooling toward a retrograde stage of 800-950 ℃ and 8-10 kbar,possibly along a counterclockwise p-T path.In contrast,the peak condition of the PP sample shows 1000-1050 ℃ and >12 kbar,which was followed by the formation ofSpr + Qtz corona around garnet at 930-970 ℃ and 6.7-7.7 kbar,suggesting decompression possibly along a clockwise p-T trajectory.Such contrasting p-T paths are consistent with a recent model on the structural framework of the Napier Complex that correlates the two areas to different crustal blocks.The different p-T paths obtained from the two localities might reflect the difference in the tectonic framework of these rocks within a complex Neoarchean subduction/collision belt.  相似文献   

7.
The self-similar is a common phenomena arising in the field of geology.It has been shown that geochemical element data,mineral deposits,and spacial distribution conform to a fractal structure.A fractal distribution requires that the number of objects larger than a specified size have a power-law dependence on size.This paper shows that a number of distributions,including power-function,Pareto, lognormal,and Zipf,display fractal properties under certain conditions and that this may be used as the mathemat...  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987114001601   总被引:1,自引:2,他引:1  
Data from a migmatised metapelite raft enclosed within charnockite provide quantitative constraints on the pressure-temperature-time[P-T-t) evolution of the Nagercoil Block at the southernmost tip of peninsular India.An inferred peak metamorphic assemblage of garnet,K-feldspar.sillimanite,plagioclase,magnetite,ilmenite,spinel and melt is consistent with peak metamorphic pressures of 6-8 kbar and temperatures in excess of 900℃.Subsequent growth of cordierite and biotite record high-temperature retrograde decompression to around 5 kbar and 800 C.SHRIMP U-Pb dating of magmatic zircon cores suggests that the sedimentary protoliths were in part derived from felsic igneous rocks with Palaeoproterozoic crystallisation ages.New growth of metamorphic zircon on the rims of detrital grains constrains the onset of melt crystallisation,and the minimum age of the metamorphic peak,to around560 Ma.The data suggest two stages of monazite growth.The first generation of REE-enriched monazite grew during partial melting along the prograde path at around 570 Ma via the incongruent breakdown of apatite.Relatively REE-depleted rims,which have a pronounced negative europium anomaly,grew during melt crystallisation along the retrograde path at around 535 Ma.Our data show the rocks remained at suprasolidus temperatures for at least 35 million years and probably much longer,supporting a long-lived high-grade metamorphic history.The metamorphic conditions,timing and duration of the implied clockwise P-T-t path are similar to that previously established for other regions in peninsular India during the Ediacaran to Cambrian assembly of that part of the Gondwanan supercontinent.  相似文献   

9.
http://www.sciencedirect.com/science/article/pii/S1674987111000387   总被引:2,自引:0,他引:2  
Fluid flow is an integral part of hydrothermal mineralization,and its analysis and characterization constitute an important part of a mineralization model.The hydrodynamic study of mineralization deals with analyzing the driving forces,fluid pressure regimes,fluid flow rate and direction,and their relationships with localization of mineralization.This paper reviews the principles and methods of hydrodynamic studies of mineralization,and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure,topographic relief,tectonic deformation, and fluid density change due to heating or salinity variation,depending on specific geologic environments and mineralization processes.The study methods may be classified into three types,megascopic(field) observations, microscopic analyses,and numerical modeling.Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic) fluid systems include horizontal veins,sand injection dikes,and hydraulic breccias.Microscopic studies,especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes(FIPs) can provide important information about fluid temperature,pressure,and fluid-structural relationships,thus constraining fluid flow models.Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer,rock deformation and chemical reactions,in order to simulate the distribution of fluid pressure, temperature,fluid flow rate and direction,and mineral precipitation or dissolution in 2D or 3D space and through time.The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits,and can be used directly or indirectly in mineral exploration.  相似文献   

10.
This paper presents numerical investigation on the ore-forming fluid migration driven by tectonic deformation and thermally-induced buoyancy force in the Chanziping ore district in South China. A series of numerical scenarios are considered to examine the effect of meteoric water precipitation, the dip angle of the faults, unconformity surface, and thermal input on the ore genesis. Our computations reveal that the downward basinal fluid flow driven by extensional stress mixes with the upward basal fluid driven by the thermal input from depth at the junction of two faults at a temperature of about 200 C, triggering the precipitation of the Chanziping uranium deposit.  相似文献   

11.
We review petrologic observations of reaction textures from high-grade rocks that suggest the passage of fluids with variable alkali activities. Development of these reaction textures is accompanied by regular compositional variations in plagioclase, pyroxenes, biotite, amphibole and garnet. The textures are interpreted in terms of exchange and net-transfer reactions controlled by the K and Na activities in the fluids. On the regional scale, these reactions operate in granitized, charnockitized, syenitized etc. shear zones within high-grade complexes. Thermodynamic calculations in simple chemical systems show that changes in mineral assemblages, including the transition from the hydrous to the anhydrous ones, may occur at constant pressure and temperature due only to variations in the H2O and the alkali activities. A simple procedure for estimating the activity of the two major alkali oxides, K2O and Na2O, is imple- mented in the TWQ software. Examples of calculations are presented for well-documented dehydration zones from South Africa, southern India, and Sri Lanka. The calculations have revealed two end-member regimes of alkalis during specific metamorphic processes: rock buffered, which is characteristic for the precursor rocks containing two feldspars, and fluid-buffered for the precursor rocks without K-feldspar. The observed reaction textures and the results of thermodynamic modeling are compared with the results of available experimental studies on the interaction of the alkali chloride and carbonate-bearing fluids with metamorphic rocks at mid-crustal conditions. The experiments show the complex effect of alkali activities in the fluid phase on the mineral assemblages. Both thermodynamic calculations and experiments closely reproduce paragenetic relations theoretically predicted by D.S. Korzhinskii in the 1940s.  相似文献   

12.
<正>Fault-block structures of the Altay-Sayan folded area(ASFA) southeastern Siberia of Russia were used as the basis for creating a 3-D model.The surface structures were projected to depths by previous correlations between long and deep faults,with all layers and deformation factors defined. The mean deformation factor(Ds) is 0.12 unit/km~3 in the upper layer,0.012 unit/km~3 in the intermediate layer,and 0.007 unit/km~3 in the lower layer of the 3-D ASFA neotectonic model.Ds allows correlation of the three distinguished layers with rheological bodies that differ in their potential for accumulating elastic energy.3-D modeling can be used as a methodological approach to projections in seismic prone areas such as the Krasnoyarsk region,for earthquake-hazard monitoring.  相似文献   

13.
The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil,gas and coal in China.The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies,but it has not been well understood in terms of the hydrodynamics of basin fluid flow.We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing,reducing fluid and a downward flowing,oxidizing fluid.This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow,and topographic relief,which drove the downward flow.In this study,we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure,in addition to sediment compaction and heating.Our results indicate that when hydrocarbon generation is taken into account,fluid overpressure during the Cretaceous was more than doubled in comparison with the simulation when hydrocarbon generation was not considered.Furthermore,fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case.These results suggest that hydrocarbon generation may have played an important role in uranium mineralization,not only in providing reducing agents required for the mineralization,but also in contributing to the driving force to maintain the upward flow.  相似文献   

14.
http://www.sciencedirect.com/science/article/pii/S1674987111001411   总被引:2,自引:0,他引:2  
正Three-dimensional geological modeling(3DGM) assists geologists to quantitatively study in three-dimensional(3D) space structures that define temporal and spatial relationships between geological objects.The 3D property model can also be used to infer or deduce causes of geological objects.3DGM technology provides technical support for extraction of diverse geoscience information,3D modeling,and quantitative calculation of mineral resources.Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology;a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate:(1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineralization and a porphyry Cu deposit model,a spatial relational database of multiple geoscience information for mineralization in the study area(geology,geophysics,geochemistry,borehole,and cross-section data) was established,and 3D metallogenic geological objects including mineralization stratum,granodiorite, alteration rock,and magnetic anomaly were constructed;(2) on basis of the 3D ore deposit model,23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method;(3) combined 23,800 surveys involving 21 sections,using VC++ and OpenGL platform,virtual borehole and virtual section with BP network,and an improved inverse distance interpolation(IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%);(4) comparison of 3D ore bodies,metallogenic geological objects of mineralization,and potential targets of mineralization models in the study area,delineated the 3D spatial and temporal relationship and causal processes among the ore bodies,alteration rock,metallogenic stratum,intrusive rock,and the Tongshan Fault.This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.  相似文献   

15.
正1.Introduction This special issue of Geoscience Frontiers is a tribute volume honoring the life and career of Jacques Touret.A set of research papers has been assembled,which broadly reflect his research interests over his 50 plus year career.These papers focus on the role that fluids play during the formation and evolution of the Earth's crust.Below I provide a brief summary of the life of Jacques Touret,along with a select bibliography of his more important papers.This is then followed by a brief introduction to the papers assembled for this special issue.  相似文献   

16.
Quasi-integrity of continental crust between Mid-Archaean and Ediacaran times is demonstrated by conformity of palaeomagnetic poles to near-static positions between~2.7-2.2 Ca,~1.5-1.2 Ga and~0.75-0.6 Ga.Intervening data accord to coherent APW loops turning at "hairpins" focused near a continental-centric location.Although peripheral adjustments occurred during Early Proterozoic (~2.2 Ga) and Grenville(~1.1 Ga) times,the crust retained a low order symmetrical crescent-shaped form constrained to a single global hemisphere until break-up in Ediacaran times.Conformity of palaeomagnetic data to specific Eulerian parameters enables definition of a master Precambrian APW path used to estimate the root mean square velocity(vRMS) of continental crust between 2.8 and 0.6 Ga.A long interval of little polar movement between~2.7 and 2.2 Ga correlates with global magmatic shutdown between~2.45 and 2.2 Ga,whilst this interval and later slowdown at~0.75-0.6 Ga to velocities of <2 cm/year correlate with episodes of widespread glaciation implying that these prolonged climatic anomalies had an internal origin;the reduced input of volcanically-derived atmospheric greenhouse gases is inferred to have permitted freeze-over conditions with active ice sheets extending into equatorial latitudes as established by low magnetic inclinations in glaciogenic deposits.vRMS variations through Precambrian times correspond to the distribution of U-Pb ages in orogenic granitoids and detrital zircons and demonstrate that mobility of continental crust has been closely related to crustal tectonism and incrementation.Both periods of near-stillstand were followed by rapid vRMS recording massive heat release from beneath the continental lid at~2.2 and 0.6 Ga.The first coincided with the Lomagundi-Jatuli isotopic event and led to prolonged orogenesis accompanied by continental flooding and reconfiguration of the crust on the Earth’s surface;the second led to continental break-up and instigated the comprehensive Plate Tectonics that has characterised Phanerozoic times.The Mesoproterozoic interval characterised by anorogenic magmatism correlates with low vRMS between~1.5 and 1.1 Ga.Insulation of the sub-continental mantle evidently permitted high temperature melting and weakening of the crustal lid to enable buoyant emplacement of large plutons at high crustal levels during this magmatic event unique to Mesoproterozoic and early Neoproterozoic times.  相似文献   

17.
The Palaeoproterozoic–Mesoproterozoic transition (~1600 Ma) is a significant event in the Earth history as a global thermal perturbation affected the pre-1600 Ma landmasses. Like other cratonic blocks of the world, lithospheric thinning, sedimentation, magmatism, metamorphism and crustal melting/anatexis are associated with this significant geological event in the Singhbhum cratonic province of India. This paper is a review of sedimentological, magmatic and tectono-thermal events in the Singhbhum craton at ~1600 Ma. The Palaeo-Mesoproterozoic sedimentation and volcanism in the Singhbhum craton took place in a terrestrial intracontinental rift setting. The available geochronological data are indicative of late Palaeoproterozoic to Neoproterozoic tectono-thermal events in the Chhotanagpur Granite Gneissic Complex (CGGC), an east–west trending arcuate belt of granite gneisses, migmatites and metasedimentary rocks. A detailed multidisciplinary geo-scientific investigation of the Dalma volcanic belt and the area to its north (Chandil Formation) and further north in CGGC will enable us to constrain the extant surface processes and crust-mantle interactions, the collision events between the North and South Indian cratonic blocks, and the position of India in the Columbia supercontinent.  相似文献   

18.
By applying the ’theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of southern China,a characteristic target-pattern regional ore zonality has been discovered.During the early and late Yanshanian epoch(corresponding respectively to the Jurassic and Cretaceous periods),two centers of ore formation emerged successively in the Nanling region;the former is mainly for rare metals(W,Sn,Mo,Bi,Nb) and one rare-earth element (La) and was generated in the Jurassic period;whereas the latter is mainly for base metals(Cu,Pb,Zn,Sb, Hg),noble metals(Au,Ag),and one radioactive element(U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southern Hunan Province.The characteristic giant nonlinear target-pattern regional ore zonality was generated by spatio-temporal synchronization process of the Nanling complex metallo-genic system.It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality.Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures.Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution.A new methodology for revealing regional ore zonality is developed,which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S1674987114000565   总被引:1,自引:0,他引:1  
During granulite-facies metamorphism of metasedimentary rocks by the infiltration of carbonic fluids, the disappearance of hydrated minerals leads to the liberation of aqueous fluids. These fluids are strongly enriched in F and C1, and a series of Large-lon-Lithophile (LIL) elements and rare metals, resulting in their depletion in granulites. To sum up the fate of these elements, we focus on three domains representing different crustal levels and showing distinct behaviours with respect to these elements. The Lapland metasedimentary granulites illustrate the behaviour of the LILE and rare metals during lower crustal metamorphism. There is no change in Ba, moderate loss in Rb, and extreme depletion in Cs, Li, and Sn. F and CI contents are also very low compared to the protoliths or average upper continental crust. Biotite and amphibole breakdown leads to the incorporation of their partitioning into a fluid or a melt. The Tranomaro metasomatized marbles recrystallizing under granulite-facies conditions represent a demonstrative example of fluid transfer from granulite-facies supracrustals to traps represented by regional scale skarns. Such fluids may be at the origin of the incompatible element enrichment detected in leucosomes of migmatites from St Malo in Brittany (France) and Black Hills in South Dakota, The northern French Massif Central provides us with an example of a potential association between incompatible element enrichment of granitic melts and granulite-facies metamorphism. U- and F- enriched fine-grained granites are emplaced along a crustal scale shear zone active during the emplacement within the St Sylvestre peraluminous leucogranitic complex, We propose that during granulite-facies metamorphism dominated by carbonic waves in a deep segment of the continental crust, these shear zones control: (i) the percolation of F-, LILE-, rare metal-rich fluids liberated primarily by the breakdown of biotite; (ii) the enhancement of partial melting by F-rich fluids at intermediate crustal lev  相似文献   

20.
http://www.sciencedirect.com/science/article/pii/S1674987112001569   总被引:1,自引:0,他引:1  
The southeastern Anatolia comprises numbers of tectono-magmatic/stratigraphic units such as the metamorphic massifs,the ophiolites,the volcanic arc units and the granitoid rocks.All of them play important role for the late Cretaceous evolution of the southern Neotethys.The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion.Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of(83.1±2.2)-(74.6±4.4) Ma. Comparison of the ophiolites,the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution.The ophiolites formed in a suprasubduction zone(SSZ) setting as a result of northward intra-oceanic subduction.A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83-75 Ma.Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform(Malatya-Keban) and followed by the intrusion of l-type calc-alkaline volcanic arc granitoids during 84-82 Ma.New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZtype crust.Then the arc-related volcanic-sedimentary unit continued its development and lasted at~75 Ma until the deposition of the late Campanian—Maastrichtian shallow marine limestone.The subduction trench eventually collided with the Bitlis-Ptrge massif giving rise to HP-IT metamorphism of the Bitlis massif.Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were genetically different from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号