共查询到17条相似文献,搜索用时 66 毫秒
1.
氯代烃是地下水中最常检出的有机污染物之一,传统的处理方法需要很长时间与经费。近年来随着铁还原技术的发展,纳米铁和纳米双金属也是一个活跃的研究领域。本文利用批实验的研究方法以四氯乙烯(PCE)为目标污染物,研究纳米镍/铁在去除PCE过程中的影响因素。实验结果表明,暴露后的纳米Ni/Fe脱氯速率比不暴露时速率降低约4倍;反应温度是影响反应速率的一个重要因素之一,每升高10℃,反应速率常数kSA提高2~3倍;在一定范围内,Ni/Fe质量比越高,越利于脱氯反应的快速进行,当Ni/Fe的质量百分比为8%左右时,对氯代烃脱氯速率最快;反应液中的溶解… 相似文献
2.
纳米铁还原脱氮动力学及其影响因素 总被引:2,自引:1,他引:2
饮用水中硝酸盐(NO3-)对人体健康有危害。为了去除水溶液中NO3-,在实验室制得纳米铁颗粒。它的粒径为20~40 nm,比表面积(BET)为49.16 m2/g。本研究通过批实验考察了纳米铁对NO3-还原脱氮动力学性质和影响NO3-脱氮快慢的主要因素,如反应pH、纳米铁投加量和NO3-起始浓度。实验结果表明,pH越低越有利于NO 3-还原。在一定范围内,NO 3-还原速率随纳米铁投加量增加而增大,而随NO 3-起始浓度升高而降低,反应遵循准一级反应动力学方程,表面吸附和氧化还原反应是纳米铁对NO3-脱氮的主要去除机理。纳米铁对NO3-还原过程中可能反应的途径进行了讨论,NO3-还原产物取决于反应条件。在本研究条件下,纳米铁对NO3-脱氮的最终产物主要为NH4+-N而不是N2,必须进行更多的研究来解决这一问题。 相似文献
3.
4.
选取酸性矿坑水环境中常见的次生含铁硫酸盐矿物———黄钾铁矾[KFe3(SO4)2(OH)6]为研究对象,用硫酸盐还原菌
Desulfovibriovulgaris 和异化铁还原菌Shewanellaputrefaciens CN32对其进行还原实验,探讨作为重金属治理潜在材料的
黄钾铁矾的微生物稳定性.实验采用非增长型培养基,在中性、厌氧、30℃的条件下进行.采用湿化学方法测量水溶液及还原产
生的总Fe2+ ,利用X射线衍射(X-raydiffraction,简称XRD)来分析反应后残余固体物质的矿物组成,用扫描电镜(scanning
electronicmicroscopy,简称SEM)观察固体残余物的形貌特征.结果表明,没有微生物的参与,黄钾铁矾的稳定性较好.异化铁
还原菌S.putrefaciens CN32和硫酸还原菌D .vulgaris 在营养极其匮乏的中性厌氧条件下均能还原黄钾铁矾晶格中的
Fe3+ ,显示出黄钾铁矾被微生物还原的可能性.S.putrefaciens CN32还原黄钾铁矾晶格中Fe3+ 的最大还原速率和最终Fe3+
还原率分别为0.001mmol·L-1·h-1和0.37%.与S.putrefaciens CN32不同,D .vulgaris 对黄钾铁矾的还原能力较强,不
含有电子穿梭体(Anthraquinone-2,6-disulfonate,简称AQDS)的实验体系中Fe3+ 的最大还原速率和最终Fe3+ 还原率分别为
0.017mmol·L-1·h-1和16.80%,而添加了AQDS的实验体系的则分别达到了0.026mmol·L-1·h-1和24.30%,这可能与
黄钾铁矾中含有SO42- 有关.D .vulgaris 优先还原黄钾铁矾晶格中的SO42- 产生的H2S是强还原剂,也可促进Fe3+ 的还原,
微生物以及H2S的双重作用可能是导致D .vulgaris 体系中Fe3+ 还原率较高的原因.XRD分析表明,黄钾铁矾经过S.putrefaciens
CN32的作用,物相没有发生变化;而经过D .vulgaris 作用后,黄钾铁矾的特征峰消失,固相残余物中出现了菱铁
矿(FeCO3)、蓝铁矿[Fe3(PO4)2·8H2O]等次生矿物.由于培养基中没有添加任何的磷酸盐,因此蓝铁矿的出现可能是由于培
养基中添加的少量酵母浸膏降解后产生的磷酸根与D .vulgaris 还原黄钾铁矾产生的Fe2+ 相互作用的结果.这些认识对深入
理解地球表层铁的生物地球化学循环具有重要意义,为矿山环境重金属的污染治理提供了实验依据. 相似文献
5.
铁还原细菌是微生物诱导矿化的典范之一, 它可以利用有机质或氢气作为电子供体还原三价铁, 并在细胞外矿化形成多种含铁矿物, 比如磁铁矿、菱铁矿、蓝铁矿和绿锈等矿物, 从而广泛参与自然界中铁元素的生物地球化学循环过程。本文主要介绍铁还原细菌矿化产物的矿物特征、形成条件和影响因素。此外, 通过实验室内建立严格厌氧的环境体系, 以与微量元素共沉淀的水合氧化铁为底物, 本研究分别利用Feaq2+和铁还原细菌Shewanella oneidensis MR-4合成非生物成因和生物成因的磁铁矿, 结果发现微量元素的存在会改变磁铁矿的形貌和粒径。结合前人提出的微生物可能参与铁建造沉积的过程, 本文评估了微量元素作为识别矿物成因指标的有效性, 探讨铁还原细菌矿化产物对铁建造沉积的潜在贡献。
相似文献6.
以连二亚硫酸钠为硫源,七水合硫酸亚铁为铁源,利用一步硫化法制备硫化纳米零价铁(S-nZVI),并用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等,研究S-nZVI表面形貌及元素化学形态等关键特性;以Cr(Ⅵ)为目标污染物,考察溶液初始pH值、材料投加量和Cr(Ⅵ)的初始浓度对去除效果的影响,分析S-nZVI去除Cr(Ⅵ)的机理。表征结果表明,S-nZVI是Fe(0)和FeS共存的材料,且以Fe(0)为主,其饱和磁场强度为83.5 emu/g。溶液初始pH值、材料投加量能影响S-nZVI对Cr(Ⅵ)的去除。当投加量为0.5 g/L、pH值为2、Cr(Ⅵ)初始浓度为20 mg/L时,在5 min内可以达到反应平衡,去除率可达98%。S-nZVI对Cr(Ⅵ)的去除符合准二级动力学方程,去除机理包括吸附、还原与共沉淀等作用。 相似文献
7.
纳米镍/铁去除氯代烃影响因素的探讨 总被引:10,自引:0,他引:10
氯代烃是地下水中最常检出的有机污染物之一,传统的处理方法去除率很低。近年来随着铁还原技术的发展,纳米铁和纳米双金属也成为一个活跃的研究领域。利用批实验的研究方法以四氯乙烯(PCE)和四氯化碳(CT)为目标污染物,研究纳米镍/铁在去除PCE过程中的影响因素。实验结果表明,在碱性条件下,纳米Ni/Fe对PCE脱氯速率比在酸性和中性条件下脱氯速率更快;纳米Ni/Fe对初始浓度为6·51mg/L的PCE溶液脱氯速率是对初始浓度为20·56mg/L的PCE溶液脱氯速率的1·8倍;对于氯代程度相同的CT和PCE,对CT的脱氯速率明显快于对PCE。 相似文献
8.
本文选用采自辽宁某矿的天然钠基蒙脱石与两株异化铁还原菌模式菌株Shewanella putrefaciensCN32和She-wanellaoneidensisMR-1,研究了蒙脱石与微生物之间的交互作用。结果表明这两株菌均能还原蒙脱石晶格中的三价铁,使微生物作用于蒙脱石之后的反应体系中二价铁离子浓度明显升高,反应悬浊液颜色由无色变为浅绿色。透射电子显微镜晶格条纹像显示微生物作用后的粘土矿物微结构发生明显变化,其层间距d001值从1.29 nm分别减小为1.06 nm(CN32)和1.02nm(MR-1)。上述结果综合指示这两株异化铁还原菌能够通过还原天然蒙脱石结构中的三价铁促进矿物发生物相转变。 相似文献
9.
采用液相还原法成功制备纳米零价铁,并组装出生物质炭负载纳米零价铁复合材料(NZVI/BC)。XRD图谱显示,NZVI/BC由生物质炭(BC)和纳米零价铁(NZVI)两种成分复合而成;SEM图像显示,加入生物质炭之后,NZVI颗粒在炭表面分散良好。研究考察溶液p H值、还原剂投加量、铁/炭比和NO-3初始浓度等因素对NZVI/BC还原性能的影响。结果表明,NZVI/BC显示出优良的还原性能。在相同条件下,反应2 h,NZVI对NO-3的去除率为75%,而NZVI/BC对NO-3的去除率为96%。NZVI/BC是一种具有应用前景的硝态氮净化材料。 相似文献
10.
11.
纳米零价铁是一种高效的环境修复材料,可以处理多种污染物;然而,纳米粒子的尺寸效应可能导致其在自然界中存在潜在毒性风险。选择几种常用包覆型、负载型和裸露的纳米铁,通过大肠杆菌的耐受性实验,比较3种纳米铁的毒性。研究表明,负载型纳米铁的分散性最好,而裸露纳米铁最差。3种纳米铁虽然对大肠杆菌都表现出毒性,但是负载型纳米铁的毒性最小。通过毒性减缓的机理分析,说明纳米铁改性后阻止了纳米颗粒与细菌的直接接触,这是空间位阻效应的作用。研究结果进一步证实了在使用纳米材料前应充分评估潜在毒性和环境效应的重要性。 相似文献
12.
《中国地球化学学报》2006,25(B08):111-112
13.
14.
循环水及污水中总磷的国家标准方法是用分光光度法测定,当样品中有机磷含量高时,分解易碳化,操作繁琐,分析误差大.本文应用磷钼黄显色示差分光光度技术测定某钢厂循环管道除垢污水中的总磷,通过正交实验确立了采用硝酸-高氯酸消解样品,将样品中聚磷酸盐、有机磷酸盐转化为正磷酸盐,在硝酸溶液中,正磷酸盐与钒钼酸铵作用生成可溶性黄色磷钒钼酸配合物,基于其颜色强度与磷的浓度成正比测定高浓度磷的含量.实验对使用的氧化剂用量、溶解温度、显色条件、测定波长进行优化,结果表明,磷含量在10.0 ~ 40.0 mg/L范围符合朗伯-比尔定律,方法精密度(RSD)<1.0%(n=5),加标回收率为98.8%~105.0%.建立的示差光度法比一般光度法相对误差小,准确度更高;与电感耦合等离子体发射光谱法的测定结果基本吻合,且测定成本更低. 相似文献
15.
16.
零价铁(Fe0) 被广泛用于地下水中硝酸盐原位与异位修复,但二价铁(Fe2+) 的存在对具有氧化膜的Fe0还原硝酸盐的作用效应仍有待研究。以100 目的未经酸化的颗粒状零价铁作为还原剂,采用室内批试验方法,研究了Fe2+在零价铁还原去除NO3-系统中的作用效应。实验结果表明,Fe2+可显著提高Fe0对于NO3-的去除速率与去除效率,且Fe2+浓度越高,去除速率与效率越高;由于未经酸化的Fe0具有氧化膜,反应初期的NO3-还原速率较慢。Fe2+将零价铁表面的Fe2O3氧化膜转化为Fe3O4,加速电子由Fe0向NO3-的转移,促进NO3-还原。此外,在反应系统中加入Fe3O4,可进一步提高Fe0对于硝酸盐的去除能力,若Fe2+不存在,仅添加Fe3O4,NO3-的去除效率没有提高。 相似文献
17.
氯代烃的污染治理已成为当今世界最热门的研究领域之一。以水体中最常见的氯代烃污染物1,1-二氯乙烯(1,1-DCE)、林丹(γ-HCH)为主要目标污染物,探讨了不同条件下负载型纳米Pd/Fe对氯代烃的去除效果。负载型纳米Pd/Fe采用浸渍→液相还原→还原沉淀的方法制备,透射电镜显示采用该方法制备的负载型金属钯和铁的平均粒径均在纳米级范围内。负载型纳米Pd/Fe具有较高的表面反应活性,当负载型纳米Pd/Fe 用量为40 g/L、反应时间达2 h时,1.1-二氯乙烯和林丹的去除率分别达到85%和100%。脱氯率与Pd/Fe投加量、钯含量、初始pH值、反应温度等因素有关,与溶液的初始浓度关系不大。负载型纳米Pd/Fe对11-DCE和γ-HCH去除均符合一级反应动力学方程,速率常数分别为0-528 3 h-1及2-012 9 h-1,反应的半衰期t1/2分别为1.31 h和0.34 h。推断在反应过程中,Fe腐蚀产生的H2为主要还原剂,Pd是良好的加氢催化剂,在金属颗粒表面形成高浓度反应相,使反应短时间内完成。 相似文献