首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The aim of the present paper is to explore the mechanism of fast Sweet–Parker’s magnetic reconnection with the Cowling’s conductivity. Cowling derived the resistivity of plasma with three components: electrons, ions and neutral particles in magnetic field theoretically after Spitzer. The resistivity is much larger than the Spitzer’s. According to the idea of partially ionized plasmas ejected into the corona as the trigger of flares, we adopt Cowling’s Conductivity to Sweet–Parker’s reconnection model in this paper. The result shows that the reconnection rate can be improved a lot in solar corona and approaches the timescale of solar flare in the absence of anomalous resistivity.  相似文献   

2.
在中国科学技术大学的线性磁化等离子体装置上,通过对两个平行电流板施加同向电流,实现重联磁场位型的构造,进而开展实验室等离子体中磁力线重联过程的研究.利用发射探针测量了重联过程中的平行(轴向)电场,实验验证了重联电流与通行粒子的依赖关系.利用磁探针测量了磁场通量的演化,未发现通量堆积现象,与数值预言相符.  相似文献   

3.
Craig  I.J.D.  Watson  P.G. 《Solar physics》2000,194(2):251-268
It has recently been shown that there is a well defined upper limit to the rate of magnetic merging for two-dimensional flux pile-up solutions. This rate, derived by equalizing the dynamic and magnetic pressures in the reconnection region and saturating the magnetic field in the current layer, leads to a significant enhancement of the classical Sweet–Parker merging limit. In this study we explore optimal merging rates in the case of three-dimensional fan and spine reconnection solutions. The ideas of optimization and saturation are first illustrated using an exact fan solution. We go on to show that while spine solutions seem ineffective as flare release mechanisms, optimized fan solutions have energy release characteristics typical of modest events.  相似文献   

4.
A theoretical investigation has been made on obliquely propagating dust-ion-acoustic solitary waves (DIASWs) in magnetized dusty electronegative plasma containing Boltzmann electrons, trapped negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The reductive perturbation method has been employed to derive the modified Zakharov-Kuznetsov (MZK) equation which admits solitary wave solution under certain conditions. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation-expansion technique. The basic properties (speed, amplitude, width, instability, etc.) of small but finite amplitude DIASWs are significantly modified by the effects of external magnetic field, obliqueness, polarity of dust, and trapped negative ions. The implications of our results in space and laboratory plasmas are briefly discussed.  相似文献   

5.
The problem of two-stream instability in plasmas where electrons move through ions with arbitrary orientation of the magnetic field is discussed. Electrostatic and electromagnetic instabilities have both been discussed. It is found that the strength and orientation of the magnetic field both affect the electrostatic waves propagating along the streaming direction to a considerable extent. The electromagnetic instability with a cross-field orientation is associated with a larger range of unstable wavenumber and larger growth rates compared to any other coexisting electrostatic instability.  相似文献   

6.
The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) “diffusion region”, where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as \({<}10^{-5}\) per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape \(W_b\propto k^{-\alpha }\) in wavenumber k with power becoming as low as \(\alpha \approx 2\). Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, “current carpets”. By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching \(F(\gamma )\propto \gamma ^{-1}\), with \(\gamma \) the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.  相似文献   

7.
Reconnection is the most efficient way to release the energy accumulated in the tense astrophysical magnetoplasmas. As such it is a basic paradigm of energy conversion in the universe. Astrophysical reconnection is supposed to heat plasmas to high temperatures, it drives fast flows, winds and jets, it accelerates particles and leads to structure formation. Reconnection can take place only after a local breakdown of the plasma ideality, enabling a change of the magnetic connection between plasma elements. After Giovanelli first suggested magnetoplasma discharges in 1946, reconnection has usually been identified with vanishing magnetic field regions. However, for the last ten years a discussion has been going on about the structure of 3 D reconnection, e.g., whether in 3 D it is possible also without magnetic nulls or not. We first shortly review the relevant magnetostatic and kinematic fluid theory results to argue than that a kinetic approach is necessary to reveal the generic three-dimensional structure and dynamics of reconnection in collisionless astrophysical plasmas. We present results about the 3 D structure of kinetic reconnection in initially antiparallel magnetic fields. They were obtained by selfconsistently considering ion and electron inertia as well as dissipative wave-particle resonances. In this approach reconnection is a natural consequence of the instability of thin current sheets. We present the results of a nonlocal linear dispersion theory and describe the nonlinear evolution of the instability using numerical particle code simulations. The decay of thin current sheets directly leads to a configurational instability and three-dimensional dynamic reconnection. We report the resulting generic magnetic field structure. It contains pairs of magnetic nulls, connected by separating magnetic flux surfaces through which the plasma flows and along which reconnection induces large parallel electric fields. Our results are illustrated by virtual reality views and movies, both stored on the attached CD-ROM and also being available from the Internet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   

9.
We discuss nonlinear mode-mode coupling phenomena in cosmic plasmas. Four problems are considered: (1) nonlinear three-wave processes in the planetary magnetosphere involving the interaction of auroral Langmuir, Alfvén and whistler waves, (2) nonlinear three-wave processes in the solar wind involving the modulation of Langmuir and electromagnetic waves by ion-acoustic waves, (3) order and chaos in nonlinear four-wave processes in cosmic plasmas, and (4) regular and chaotic dynamics of the relativistic Langmuir turbulence and its application to pulsar and AGN emissions. The observational evidence in support of nonlinear wave-wave interactions in space and astrophysical plasmas is presented.  相似文献   

10.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

11.
本文研究了磁流体力学与高频等离子体波( 包括纵横模式) 之间的精巧的相互作用。研究表明,这些等离激元会在电流片内诱发一种阻抗不稳定,并最终导至磁重联,出现爆发性不稳定。在高涨的离声湍动情况下,高温电流片模型必须采用反常电导率,而非库仑电导率。理论估算的结果与观测相一致。因此这种计及等离激元有质动力作用的新磁重联理论,基本上能解释耀斑现象。  相似文献   

12.
Motivated by the problem of magnetic reconnection in turbulent astrophysical plasmas with a strong magnetic field, in particular, in solar flares, we have calculated the probability of occurrence of various topological structures of three-dimensional reconnection at the null point of a random magnetic field. We have established that the peculiar nonaxisymmetric structure with six asymptotic directions, the six-tailed structure, also called the improper radial null, plays a dominant role. All the remaining structures, in particular, the axisymmetric ones (the proper radial nulls), occur with a much lower probability. The fundamental feature of the six-tailed structure is that at large distances it is approximately reduced to the classical two-dimensional X-type structure.  相似文献   

13.
Reconnection of the magnetic lines of force is considered in case the magnetic energy exceeds the rest energy of the matter. It is shown that the classical Sweet–Parker and Petschek models are generalized straightforwardly to this case and the reconnection rate may be estimated by substituting the Alfven velocity in the classical formulae with the speed of light. The outflow velocity in the Sweet–Parker configuration is mildly relativistic. In the Petschek configuration, the outflow velocity is ultrarelativistic whereas the angle between the slow shocks is very small. As a result of the strong compression, the plasma outflow in the Petschek configuration may become strongly magnetized if the reconnecting fields are not exactly antiparallel.  相似文献   

14.
Litvinenko  Yuri E. 《Solar physics》1999,186(1-2):291-300
The problem of the plasma pressure limitations on the rapidity of flux pile-up magnetic reconnection is re-examined, following the claim made by Jardine and Allen (1998) that the limitations can be removed by relaxing the assumption of zero-vorticity two-dimensional plasma flows. It is shown that for a two-dimensional stagnation point flow with nonzero vorticity the magnetic merging rate cannot exceed the Sweet–Parker scaling in a low-beta plasma. The pressure limitation appears to be much less restrictive for weak three-dimensional flux pile-up, provided the perturbation length scale in the third dimension is much less than the global length scale. The actual reconnection rate in the latter case, however, is much lower than this upper estimate unless the current sheet width is also much less than the global scale.  相似文献   

15.
Large amplitude waves as well as turbulence has been observed in the interplanetary medium. This turbulence is not understood to the extent that one would like to. By means of techniques of nonlinear dynamical systems, attempts are being made to properly understand the turbulence in the solar wind, which is essentially a nonuniform streaming plasma consisting of hydrogen and a fraction of helium. We demonstrate that the observed large amplitude waves can generate solitary waves, which in turn, because of some propagating solar distubance, can produce chaos in the medium. The chaotic fields thus generated can lead to anomalously large plasma heating and acceleration.Unlike the solitary waves in uniform plasmas, in nonuniform plasmas we get accelerated solitary waves, which lead to electromagnetic as well as electrostatic (e.g. ion acoustic) radiations. The latter can be a very efficient source of plasma heating.  相似文献   

16.
Three-dimensional (3D) magnetic reconnection is taking place commonly in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. One of the proposed mechanisms for steady-state 3D magnetic reconnection is “torsional spine reconnection”. By using the magnetic and electric fields for “torsional spine reconnection”, we numerically investigate the features of test particle acceleration with input parameters for the solar corona. We show that efficient acceleration of a relativistic proton is possible near the null point where it can gain up to 100 MeV of kinetic energy within a few milliseconds. However, varying the injection position results in different scenarios for proton acceleration. A proton is most efficiently accelerated when it is injected at the point where the magnetic field lines change their curvature in the fan plane. Moreover, a proton injected far away from the null point cannot be accelerated and, even in some cases, it is trapped in the magnetic field. In addition, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.  相似文献   

17.
A set of three nonlinearly coupled equations governing the interaction between electromagnetic ion-cyclotron and magnetosonic waves is derived. In appropriate limiting cases, the set yields simplified equations. On the other hand, the full set of equations is used to derive a general dispersion relation for the parametric interaction of electromagnetically modulated ion-cyclotron wave packets. An analytical expression for the growth rate of the electromagnetic modulational instability is presented. The relevance of our investigation to non-thermal electromagnetic fluctuations in astrophysical and cometary plasmas is pointed out.  相似文献   

18.
Acceleration processes for fast particles in astrophysical and space plasmas are reviewed with emphasis on stochastic acceleration by MHD turbulence and on acceleration by shock waves. Radiation processes in astrophysical and space plasmas are reviewed with emphasis on plasma emission from the solar corona and electron cyclotron maser emission from planets and stars.  相似文献   

19.
G. P. Chernov 《Solar physics》1990,130(1-2):75-82
This short report concerns a general consideration of whistler manifestations in fine structures, including possible trajectories of obliquely propagating whistlers, the role of quasilinear diffusion and an interpretation of new observations. A whistler ray tracing and kinetic whistler growth rates under arbitrary angles to the magnetic field in the solar corona were calculated. Different regimes of a whistler instability yield divers elements of fine structures: different stripes in emission and absorption or millisecond pulsations, moreover, zebra-stripes can convert into fiber bursts and inversely. A new explanation of low-frequency absorption in fibers is proposed: it is connected with an attenuation of plasma-wave instability due to the fast electron diffusion by whistlers. Rope-like chains of fiber bursts are explained by a periodic whistler instability in a magnetic reconnection region.  相似文献   

20.
The growing field of Laboratory Astrophysics seeks to study the extreme environments found in many astrophysical events in the controlled setting of a laboratory. In addition to the opportunity to perform basic research into the nature and properties of materials in astrophysical environments, laboratory astrophysics experiments serve beautifully for validating calculations performed by simulation codes designed to model astrophysical phenomena. I present results from our ongoing validation effort for FLASH, a parallel adaptive-mesh hydrodynamics code for the compressible, reactive flows of astrophysical environments. The first test case is a laser-driven shock propagating though a multilayer target introducing Rayleigh–Taylor and Richtmyer–Meshkov fluid instabilities at the material interfaces. The second is an accelerating fluid interface that is subject to the Rayleigh–Taylor instability. We found good agreement between simulations and experiment for the multilayer target case, but disagreement between experiment and simulation in the Rayleigh–Taylor case. I discuss our findings and possible reasons for the disagreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号