首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Geomagnetic pulsation in the Pc3-4 bands have been studied at high Antarctic latitudes during the local summer. The statistical relation between the occurrence probability of Pc3 and Pc4 pulsations and the solar wind (SW) and IMF parameters has been revealed by verifying the hypothesis that an indication is identical in two distributions. Different dependences of the occurrence probability of high-latitude Pc3 and Pc4 pulsations on the IMF value and orientation and SW density and velocity have been found out. It has been indicated that these dependences remain unchanged in the range of geomagnetic latitudes from 66° to 87°. It has been established that the Pc3 observation probability at small (20°–50°) IMF cone angles (θ = cos?1(B x/|B|)) is a factor of 1.5 higher than the average statistical probability and depends on the IMF value, which confirms the hypothesis that the Pc3 source is the turbulent region upstream of the magnetospheric quasiparallel low shock. On the contrary, the probability of occurrence of Pc4 weakly depends on the IMF cone angle and is maximal at θ ~ 0° and ~90°. With increasing negative B z values, the generation probability increases in the Pc4 band and tends to decrease in the Pc3 band. It has been found out for the first time that the dependence of the Pc4 occurrence probability on the IMF clock angle (? = tan?2 (B/B z) is identical in the regions of projections of closed and open field lines, whereas this dependence is different for Pc3. In the region of projections of closed field lines, the Pc3 occurrence probability increases at B z < 0 and B y > 0 (the condition under which the cusp shifts on the dawn side) and at B y < 0 and B z > 0 (which is typical of the formation of the low-latitude boundary plasma sheet). In the region of projections of open field lines such a probability increases at B y < 0 and B z < 0 (which results in the formation of the high-latitude boundary plasma sheet). Based on the discovered regularities, the conclusion has been made that the sources of generation of high-latitude Pc3 and Pc4 pulsations are different.  相似文献   

2.
A complex of geophysical phenomena (geomagnetic pulsations in different frequency ranges, VLF emissions, riometer absorption, and auroras) during the initial phase of a small recurrent magnetic storm that occurred on February 27–March 2, 2008, at a solar activity minimum has been analyzed. The difference between this storm and other typical magnetic storms consisted in that its initial phase developed under a prolonged period of negative IMF B z values, and the most intense wave-like disturbances during the storm initial phase were observed in the dusk and nighttime magnetospheric sectors rather than in the daytime sector as is observed in the majority of cases. The passage of a dense transient (with N p reaching 30 cm−3) in the solar wind under the southward IMF in the sheath region of the high-speed solar wind stream responsible for the discussed storm caused a great (the AE index is ∼1250 nT) magnetospheric substorm. The appearance of VLF chorus, accompanied by riometer absorption bursts and Pc5 pulsations, in a very long longitudinal interval of auroral latitudes (L ∼ 5) from premidnight to dawn MLT hours has been detected. It has been concluded that a sharp increase in the solar wind dynamic pressure under prolonged negative values of IMF B z resulted in the global (in longitude) development of electron cyclotron instability in the Earth’s magnetosphere.  相似文献   

3.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

4.
Based on the observations in six pairs of almost conjugate high-latitude stations in the Arctic and Antarctic regions, the spectral and spatial-temporal structures of long-period geomagnetic pulsations (f = 2–5 mHz) during the magnetic storm of April 16–17, 1999, which is characterized by a high (up to 20 nPa) solar wind dynamic pressure, have been studied. It has been indicated that the magnetic storm sudden commencement is accompanied by a symmetrical excitation of np pulsations near the dayside polar cusps with close amplitudes. Under the conditions when IMF B z > 0 and B y < 0, strong magnetic field variations with the periods longer than 15–20 min were observed only in the northern polar cap. When IMF B z and B y became close to zero, geomagnetic pulsation bursts in both hemispheres were registered simultaneously but differed in the spectral composition and spatial distribution. In the Northern Hemisphere, pulsations were as a rule observed in a more extensive latitude region than in the Southern Hemisphere. In the Northern Hemisphere, the oscillation amplitude maximum was observed at higher latitudes than in the Southern Hemisphere. The pulsation amplitude at geomagnetic latitude lower than 74° was larger in the Arctic Regions than in the Antarctic Regions. This can be explained by sharply different geographic longitudes in the polar cap and latitudes in the auroral zone, which results in a different ionospheric conductivity affecting the amplitude of geomagnetic pulsations.  相似文献   

5.
The results of studying the Pc4–5 pulsation parameters based on the method of bistatic backscatter of radio waves, using the EISCAT/Heating HF facility (Tromsø, Norway) and IMAGE ground-based magnetometers (Scandinavia), are presented. The observations were performed during the morning hours on October 3, 2006, when a substorm developed on the nightside. An analysis of the observational data obtained from 1000 to 1020 UT indicated that wave-like disturbances with periods corresponding to Pc4–5 pulsations (80–240 s) existed at that time. The variations in the full vector of the ionospheric irregularity motion and the electric field strength in an artificially disturbed high-latitude ionospheric F region has been reconstructed based on simultaneous Doppler observations on two paths. A general conformity is observed among the time variations in Pc4–5 pulsations in the magnetic and ionospheric data: between the velocity amplitude (|V|) and the X component of the Earth’s magnetic field and between the irregularity motion azimuth and the Y component. Large-scale waves, corresponding to the natural resonances of magnetic field lines (small values of the azimuthal number |m| ~ 2–4), and small-scale waves (large values |m| ~ 17–20) were simultaneously registered during the experiment based on magnetic data. It has been indicated that the periods of wave-like processes registered using the method of bistatic backscatter and ground-based magnetometers were in agreement with one another. The formation of wave-like processes is explained by the nonstationary impact of the solar wind and IMF on the Earth’s magnetosphere. The variations in the IMF, according to the ACE satellite measurements, were characterized by a sharp increase in the solar wind plasma dynamic pressure that occurred at about 09 UT on October 3, 2006, and was accompanied by rapid polarity reversals of the north-ward-southward (B z) and transverse (B y) IMF components.  相似文献   

6.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

7.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

8.
Observations from a network of specially equipped GPS scintillation receivers in Northern Europe are used to investigate the dynamics of ionospheric plasma during the storm events of 30 October and 20 November 2003. The total electron content (TEC) and scintillation data, combined with ionospheric tomography produced by the multi-instrument data analysis system (MIDAS), reveal strong enhancements and steep gradients in TEC during nighttime under a prevailing negative Bz component of the interplanetary magnetic field (IMF). Amplitude and phase scintillation maxima are often co-located with the TEC gradients at the edge of plasma patches, revealing the presence of small-scale irregularities and suggesting association with a tongue of ionization (TOI) convecting in an anti-sunward direction from the American sector across the polar cap. Similarities and differences between the ionospheric response to the two storms are investigated. The 30 October event reveals a quite complex scenario showing two phases of plasma dynamics: the former reflects the expected convection pattern for IMF Bz southward and the latter possibly indicates a sort of TEC plasma stagnation signature of the more complex convection patterns during several positive/negative excursions of IMF Bz.  相似文献   

9.
The data of continuous observations of ELF emissions (polar chorus) at South Pole Antarctic observatory (Φ = ?74.02°) for 1997–1999 and during the superstrong magnetic storms of October and November 2003 are analyzed. It has been established that an increase in polar chorus is as a rule observed during the initial and recovery phases of a magnetic storm at positive values of the IMF vertical component (IMF B z > 0). Under such conditions, South Pole is located in the region of closed field lines. It has been found that the generation of polar chorus at South Pole abruptly ceases during the storm main phase after the IMF B z southward turning and beginning of an intense substorm in the nightside auroral zone, probably, because this observatory appears in the region of projection of the open magnetosphere due to the expansion of the polar cap.  相似文献   

10.
A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index). Storms have also been classified here as either storm sudden commencements (SSCs) or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement). The prevailing solar wind conditions defined by the parameters solar wind speed (vsw), density (sw) and pressure (Psw) and the total field and the components of the interplanetary magnetic field (IMF) during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst\leq-50 nT for\geq4 h), but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst\leq-100 nT for \geq4 h) the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t=+1 h is the dominant sign of the Bz for \sim24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.  相似文献   

11.
The influence of the interplanetary magnetic field (IMF) on the occurrence of sporadic E (Es)-layers in the southern polar cap ionosphere has been investigated. We statistically analysed ionogram and Doppler velocity observations made using a HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E; 81°S magnetic latitude) during the two summer campaign intervals 1 January to 18 February, and 1 November to 31 December 1997. The ionogram and Doppler velocity measurements were used to determine the Es-occurrence and electric field vectors (assuming E×B/B2 drift), respectively. Concurrent IMF data were obtained from measurements made on board the Wind spacecraft. First, the gross properties of the IMF dependence of Es-formation were obtained: the occurrence rate was higher for negative By and/or positive Bz, and lower for positive By and/or negative Bz. To reconcile these gross properties with the electric field theory of Es-layer formation, the detailed diurnal variation of both Es-occurrence and the ionospheric electric field were obtained for different orientations of the IMF. The main statistical results are that: (1) the By component mainly controls the occurrence of the midnight Es-layers through its influence on the corresponding South West electric field; and (2) the Bz component mainly controls the occurrence of the evening Es-layers. However, the change in the occurrence rate for evening Es-layers was not related to the strength of the associated North West and North East electric fields. The total occurrence of Es-layers depended more on By than on Bz, owing to the dominance of By-controlled midnight Es-layers in the occurrence distribution. Nevertheless, the dependence of Es-occurrence on Bz was important. We suggest that the increase in Es-occurrence for positive Bz might be explained by the intermittent production of lower F-region ionisation by polar showers and squalls, which also increase in frequency and intensity for positive Bz. The importance of metallic ion transport within the ionosphere is also considered.  相似文献   

12.
An active aurora was observed at Eureka, Canada (88.9° N magnetic) following the arrivalat the magnetopause of the shock front resulting from the solar Coronal Mass Ejection of 6January 1997. This onset at 02:20 UT on 10 January marked the beginning of an aurora whichcontinued until at least 15:00 UT on 11 January, as viewed from both Eureka and the CANOPUSsite at Ft Smith (67.8° N magnetic). There were enhanced OI 630 nm polar F-region emissionsthroughout this period, with the IMF Bz controlling their form. When Bz was positive, there were continuous polar arcs; when Bzturned negative there were F-layer patches on open field lines. While the strong Hβ observed over Ft Smith (240 R) in addition to the extended 630 nm emissions and theirpersistence over two days suggested a red aurora of global proportions, it apparently did notextend to latitudes below 60°. There was a moderate magnetic storm associated with the aurora,but the Dst index reached only −81 nT on 10 January.  相似文献   

13.
In the present study, the deterministic chaotic behaviour of interplanetary magnetic field (IMF) under various geomagnetic conditions of low and high solar active periods was analyzed, using the time series of IMF |B| and Bz, by employing chaotic quantifiers like, Lyapunov exponent, Tsallis entropy, correlation dimension, and non-linear prediction error. We have investigated whether the chaotic behaviour of interplanetary magnetic field would modify, when it produces major geomagnetic storms, and how it depends on the phase of solar activity. The yearly average values of Lyapunov exponent for the time series of IMF |B| and Bz, show solar flux dependence, whereas those values of entropy, correlation dimension and non-linear prediction error had no significant solar flux dependence. The yearly average values of entropy for quiet periods are higher compared to those values for major storm periods belonging to low/high solar active conditions, for both the time series |B| and Bz.  相似文献   

14.
The solar magnetic field B s at the Earth’s projection onto the solar-wind source surface has been calculated for each day over a long time interval (1976–2004). These data have been compared with the daily mean solar wind (SW) velocities and various components of the interplanetary magnetic field (IMF) near the Earth. The statistical analysis has revealed a rather close relationship between the solar-wind parameters near the Sun and near the Earth in the periods without significant sporadic solar and interplanetary disturbances. Empirical numerical models have been proposed for calculating the solar-wind velocity, IMF intensity, and IMF longitudinal and B z components from the solar magnetic data. In all these models, the B s value plays the main role. It is shown that, under quiet or weakly disturbed conditions, the variations in the geomagnetic activity index Ap can be forecasted for 3–5 days ahead on the basis of solar magnetic observations. Such a forecast proves to be more reliable than the forecasts based on the traditional methods.  相似文献   

15.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

16.
The distribution of the ionospheric currents during the geomagnetic storms of November 20–21, 2003, November 7–8, 2004, and November 9–10, 2004, depending on the IMF B y component, has been studied based on the data from the global network of magnetic stations. It has been indicated that, during geomagnetic disturbances, the westward electrojet intensity maximum is localized in the evening sector at IMF B y < 0 and in the morning sector at IMF B y > 0. The region of the westward electrojet intensity maximum shifts to morning hours with increasing positive B y values. Thus, the IMF azimuthal component forms not only the magnetospheric convection pattern during magnetic storms but is also responsible for the longitudinal position of ionospheric structures.  相似文献   

17.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   

18.
The geomagnetic and auroral response to the variations in the solar wind dynamic pressure (Pd) are investigated in the periods of positive values of the IMF B z component. It is shown that the growth of Pd results in the intensification of luminosity along the auroral oval and in the poleward expansion of the poleward boundary of luminosity (PBL) in the nightside part of the oval by ~7° in latitude at a velocity of ~0.5 km/s and is accompanied by an enhancement of the DP2-type current system. A decrease in Pd, accompanied by an abrupt reversal of the IMF B y polarity from positive to negative, results in an enhancement of the westward electrojet and in a poleward shift of PBL and electrojet center. The conclusion has been made that the available three types of auroral response to Pd variations differ in the azimuthal velocity of the luminosity region or particle precipitation along the auroral oval: V 1 ~ 30–40 km/s, V 2 ~ 10, and V 3 ~ 1 km/s.  相似文献   

19.
The STARE system (Scandinavian Twin Auroral Radar Experiment) provides estimates of electron drift velocities, and hence also of the electric field in the high-latitude E-region ionosphere between 65 and 70 degrees latitude. The occurrence of drift velocities larger than about 400 m/s (equivalent to an electric field of 20 mV/m) have been correlated with the magnitude of the Interplanetary Magnetic Field (IMF) components Bz and By at all local times. Observation days have been considered during which both southward (Bz<0) and northward (Bz>0) IMF occurred. The occurrence of electric fields larger than 20 mV/m increases with increases in Bz magnitudes when Bz<0. It is found that the effects of southward IMF continue for some time following the northward turnings of the IMF. In order to eliminate such residual effects for Bz<0, we have, in the second part of the study, considered those days which were characterized by a pure northward IMF. The occurrence is considerably lower during times when Bz>0, than during those when Bz is negative. These results are related to the expansion and contraction of the auroral oval. The different percentage occurrences of large electric field for By>0 and By<0 components of the IMF during times when Bz>0, clearly display a dawn-dusk asymmetry of plasma flow in the ionosphere. The effects of the time-varying solar-wind speed, density, IMF fluctuations, and magnetospheric substorms on the occurrence of auroral-backscatter observations are also discussed.  相似文献   

20.
Pc 5-type magnetic field pulsations are detected by the IMP-8 spacecraft well inside the Earth’s magnetotail lobes. The three studied events with an average duration of 3 h and mean amplitude of B/B=6.6% show a strong longitudinal oscillation. The clockwise polarization sense of the magnetic field arrowheads in the north lobe (as well as the counterclockwise in the south lobe) on the XZ plane is consistent with that expected when periodic solar wind lateral pressures squeeze the magnetotail axisymmetrically while moving tailward. In the two case studies, the latter property has been found to concur with quasi-periodic upstream density fluctuations detected by ISEE-3 and/or ISSE-1. The lobe magnetic field oscillations are classified in two distinct modes. The manifestations of the first mode are tailward-travelling waves detectable along the By and Bz magnetic field traces (i.e., with regard to the Bz the spacecraft encounters constantly the same conspicuous signature of south-then-north tilting of field lines around each local compression region). The second mode is associated with prolonged periods of extremely low geomagnetic activity and exhibits a signature along the By component inconsistent with travelling waves. Thus, the maxima of compressions occur simultaneously with the maxima of By excursions: a feature that is explained in terms of tail-aligned current density flowing at the boundary which separates the stable magnetic field in the tail lobe from the very irregular in the magnetosheath. In this case, the spacecraft was located in the vicinity of the high-latitude tail boundary and the observed By excursions are consistent with those anticipated by the tail-aligned current polarity, which is determined by the dominant By-component of the interplanetary magnetic field (IMF). On the plane YZ we observe an almost linear and circular polarization sense of the vector magnetic field for the first and second mode, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号