首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heliographic positions of more than 100 sunspots were accurately measured several times a day from 1974 until 1979 by means of the computer-controlled tracing method described by Schröter and Wöhl (1975). A striking degree of constancy of the solar rotation rate (about 0.15% or 3 m s–1) is found, when east-west proper motion components of each individual stable sunspot is considered. However, large differences of the rotation rate are observed (up to 7% or 130 m s–1) when comparing different sunspots. We found no significant correlation of these fluctuations with characteristics of the sunspots (age, evolution, etc.).Mitteilungen aus dem Kiepenheuer-Institut Nr. 191.  相似文献   

2.
The time and spatial characteristics of 324 large sunspots (S50 millionths of the solar hemisphere) selected from the Abastumani Astrophysical Observatory photoheliogram collection (1950–1990) have been studied. The variations of sunspot angular rotation velocity residuals and oscillations of sunspot tilt angle were analyzed. It has been shown that the differential rotation rate of selected sunspots correlates on average with the solar cycle. The deceleration of differential rotation of large sunspots begins on the ascending arm of the activity curve and ends on the descending arm reaching minimum near the epochs of solar activity maxima. This behavior disappears during the 21st cycle. The amplitudes and periods of sunspot tilt-angle oscillations correlate well with the solar activity cycle. Near the epochs of activity maximum there appear sunspots with large amplitudes and periods showing a significant scatter while the scatter near the minimum is rather low. We also found evidence of phase difference between the sunspot angular rotation velocity and the amplitudes and periods of tilt-angle oscillations.  相似文献   

3.
Solar rotation rate has been measured using the sunspot positions recorded by W.C. Bond during the period 1847 – 1849 at the Harvard College Observatory. From the drawings carried out by Bond we have selected the sunspots and groups of sunspots with more reliable positions presented in three or more drawings on successive days. We have calculated from the positions of the selected sunspots (41 in total) a synodic rotation rate of ω=[(12.92±0.08)−(1.5±1.0)sin 2 φ] degrees/day, where φ is the heliographic latitude. This rate, although slightly lower, is similar to the actual solar rotation rate, confirming no important changes in the solar rotation during the last 160 years.  相似文献   

4.
The distribution of the sunspots for the period 1967–1987 (solar cycles 20 and 21) is presented here. We find that the ±11–20° latitude belt is most prolific for the occurrence of various spot types irrespective of magnetic-field ranges. Furthermore, longitudinally sunspots occur most prolifically at six or more places on the Sun. Spatially 7–9 zones are present in each hemisphere (north or south) of the Sun where about 50% sunspots occur and occupy only about 4% area of the Sun. During the above cycles at least 5 flare zones were regularly present in each hemisphere. The existing models cannot explain these active zones on the Sun. Thus, the present analysis emphasizes the need for a new magnetic models of the Sun.  相似文献   

5.
The equatorial photospheric rotation rate has been observed on 14 days in 1978–1980. The resulting rotation rate, = 14.14±0.04°/day, is 2% slower than the rate as observed for long-lived sunspots.Stationed at Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

6.
A statistical study is carried out to investigate the detailed relationship between rotating sunspots and the emergence of magnetic flux tubes. This paper presents the velocity characteristics of 132 sunspots in 95 solar active regions. The rotational characteristics of the sunspots are calculated from successive SOHO/MDI magnetograms by applying the Differential Affine Velocity Estimator (DAVE) technique (Schuck, 2006, Astrophys. J. 646, 1358). Among 82 sunspots in active regions exhibiting strong flux emergence, 63 showed rotation with rotational angular velocity larger than 0.4° h−1. Among 50 sunspots in active regions without well-defined flux emergence, 14 showed rotation, and the rotation velocities tend to be slower, compared to those in emerging regions. In addition, we investigated 11 rotating sunspot groups in which both polarities show evidence for co-temporary rotation. In seven of these cases the two polarities co-rotate, while the other four are found to be counter-rotating. Plausible reasons for the observed characteristics of the rotating sunspots are discussed.  相似文献   

7.
In this paper we present the results of a sunspot rotation study using Abastumani Astrophysical Observatory photoheliogram data for 324 sunspots. The rotation amplitudes vary in theinebreak 2–64° range (with maximum at 12–14°), and the periods around 0–20 days (with maximum atinebreak 4–6 days). It could be concluded that sunspot rotations are rather inhomogeneous and asymmetric, but several types of sunspots are distinguished by their rotational parameters.During solar activity maximum, sunspot average rotation periods and amplitudes slightly increase. This can be affected by the increase of sunspot magnetic flux tube depth. So we can suppose that sunspot formation during solar activity is connected to a rise of magnetic tubes from deeper layers of the solar photosphere, strengthening the processes within the tube and causing variations in rotation.There is a linear relation between tilt-angle oscillation periods and amplitudes, showing higher amplitudes for large periods. The variations of those periods and especially amplitudes have a periodical shape for all types of sunspots and correlate well with the solar activity maxima with a phase delay of about 1–2 years.  相似文献   

8.
Large-scale solar motions comprise differential rotation (with latitudinal, and perhaps radial gradients), axially symmetric meridional motions, and possible asymmetric motions (giant convective cells or Rossby-type waves or both). These motions must be basic in any satisfactory theory of the changing pattern of solar magnetic fields and of the 22-yr cycle. In the present paper available data are discussed and, as far as possible, evaluated and explained.Rotational measurements are based on the changing positions of discrete features such as sunspots, on Doppler shifts, on geophysical changes and on statistical evaluation of the motions of diffuse objects. The first mentioned, comprising faculae, sunspots, K-corona (to latitudes 45°) and filaments, show agreement better than 0.7 %. A new formula for surface rotation s , based on faculae and sunspot data, is s = 14.52 – 2.48 sin2 b – 2.51 sin6 b deg day–1, where b is latitude, and validity may extend to about 70°. Errors in Doppler shift measurements and statistical treatments are discussed. There is evidence of a much slower coronal rate at high latitudes, and of a slower sub-surface rate at lower latitudes.Ordered meridional motions have been revealed by statistical investigations of the positions of spot groups, of spots and of filaments. All these results seem explicable in terms of an oscillating hydro-magnetic circulation in each hemisphere. These have both 11-yr and 22-yr components, and these periods are provided by a general dipole field of about one gauss, together with a pair of toroidal fields centred at latitudes ±16° and of average strength of order 10 G.Evidence of large-scale (perhaps 3 × 105 km), irregular surface motions is provided by the distribution of surface magnetic flux, the motions of sunspots, and Doppler-shift observations; it is supported by Ward's theory of the equatorial acceleration. The possibility is suggested that these asymmetric motions also drive the oscillatory meridional motions.  相似文献   

9.
王婕  王建  王琳琳  孙威  肖振宇  张昊  梁中 《天文学报》2022,63(3):34-105
研究发现,太阳自转速率的变化与太阳活动之间存在一定的联系,但是不同学者的研究结论存在着矛盾:有的认为两者为正相关,而有的却认为是负相关.究竟两者之间是什么关系,需要做进一步深入的分析.利用EEMD (Ensemble Empirical Mode Decomposition)等方法对太阳自转速率和太阳黑子数据序列进行相关关系以及相位关系的计算和分析,以探讨太阳自转速率变化与太阳活动之间的关系.研究发现:两者的长期趋势项分量呈显著负相关;在11 yr左右周期分量上,观测到的太阳自转速率滞后太阳黑子的变化约2 yr时,呈显著负相关关系,超前3 yr时呈现次显著的正相关;对太阳活动第12–23周各周内部太阳黑子与太阳自转速率的相关分析表明,两者的关系比较复杂,但负相关关系更为显著.这为进一步理解太阳活动变化与太阳自转速率变化之间的成因联系提供了新的依据.  相似文献   

10.
The latitudinal migration of sunspots toward the equator,which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone,is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation.The Extended time series of Solar Activity Indices(ESAI)elongated the Greenwich observation record of sunspots by several decades in the past.In this study,ESAI's yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear.It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function.In addition,the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses,providing a particular constraint for solar dynamo models.Indeed,the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period,and it is located at higher latitudinal position,giving evidence to support the Babcock-Leighton dynamo mechanism.  相似文献   

11.
We present a search for the acoustic oscillation deficit which may exist at the antipodes of sunspots. Dopplergrams from Big Bear Solar Observatory 1988 helioseismology data were selected for five days on which large sunspots were known to be on the unseen hemisphere of the Sun. Acoustic oscillation amplitudes in the antipodal regions of these sunspots were compared with amplitudes in surrounding quiet-Sun regions. We did not detect a statistically significant acoustic amplitude deficit in our data. Our results indicate that the amplitude deficit at the sunspot antipodal points is limited to no more than 3% of the acoustic amplitude in the region, for solar oscillation modes of spherical harmonic degree l 200. We conclude that no strong acoustic deficit exists at the antipodes of sunspots. A more sensitive search, requiring more elaborate observations than we have performed, would be desirable in order to determine if a weak acoustic amplitude deficit exists at some level at the antipodes of sunspots, perhaps at higher spatial frequencies of oscillation. The noise level in any signals detected by such observations would probably limit their usefulness as seismic probes. However, information on the lifetimes of solar oscillation modes can be deduced even if no acoustic amplitude deficit is detected.  相似文献   

12.
H. Wöhl 《Solar physics》1988,114(1):181-184
Areas of sunspots and their positions taken from the Greenwich Photoheliographic Results (1874–1976) and typical intensities of the umbrae and penumbrae are used to calculate daily values of the solar flux at a wavelength of about 500 nm. Using overlapping time series of 512 days each solar rotation periods are determined by Fourier transformation. The periods found depend on the phase of the solar activity cycle, as expected from the solar differential rotation. This method may be used for solar type stars to determine relations between activity and rotation too. The problems of errors - e.g. by faculae or the variation of the umbral intensity within the activity cycle - are explained.Mitteilungen aus dem Kiepenheuer-Institut Nr. 284  相似文献   

13.
As shown by statistical results, in the 23rd solar activity cycle the variation of the latitudes of rotating sunspots with time exhibits a butterfly pattern. We have studied the variations with phase for the mean square errors among the 4 fitting curves of the 2 wings of the butterfly diagram of sunspots and the 2 wings of the butterfly diagram of rotating sunspots in the 23rd solar activity cycle. The results show that a systematic time delay exists not only between the northern and southern hemispheres of the butterfly diagram of sunspots, but also between the northern and southern hemispheres of the butterfly diagram of rotating sunspots, even between the butterfly diagrams of the sunspots and rotating sunspots in the same hemisphere. This means that the 23rd-cycle sunspot activities in the northern and southern hemispheres happened not simultaneously, that a systematic time delay or advance (phase difference) exists between the northern and southern hemispheres, that the southern hemisphere lags behind the northern hemisphere, that a phase difference exists between the butterfly diagram of rotating sunspots and the butterfly diagram of sunspots in the 23rd cycle, and that the butterfly diagram of rotating sunspots lags behind that of sunspots. The observed delay is a little less than the theoretical value predicted by the dynamo model.  相似文献   

14.
On the Sun, the rotation periods of individual sunspots not only trace the latitude-dependence of the surface rotation rate, but also provide clues as to the amount of subsurface fluid shear. In this paper we present the first measurements of stellar differential rotation made by tracking the rotation of individual star-spots with sizes comparable to the largest sunspots. To achieve this we re-analyse four sequences of densely sampled, high signal-to-noise ratio echelle spectra of AB Doradus spanning several stellar rotations in 1996 December. Using spectral subtraction, least-squares deconvolution and matched-filter analysis, we demonstrate that it is possible to measure directly the velocity amplitudes and rotation periods of large numbers of individual star-spots at low to intermediate latitude. We derive values for the equatorial rotation rate and the magnitude of the surface differential rotation, both of which are in excellent agreement with those obtained by Donati & Collier Cameron from cross-correlation of Doppler images derived a year earlier in 1995 December, and with a re-analysis of the 1996 data by the χ 2 landscape method. The differences between the rotation rates of individual spots and the fitted differential rotation law are substantially greater than the observational errors. The smaller spots show a greater scatter about the mean relation than the larger ones, which suggests that buffeting by turbulent supergranular flows could be responsible.  相似文献   

15.
We study the latitudinal distribution of sunspots observed from 1874 to 2009 using the center-of-latitude (COL). We calculate COL by taking the area-weighted mean latitude of sunspots for each calendar month. We then form the latitudinal distribution of COL for the sunspots appearing in the northern and southern hemispheres separately, and in both hemispheres with unsigned and signed latitudes, respectively. We repeat the analysis with subsets which are divided based on the criterion of which hemisphere is dominant for a given solar cycle. Our primary findings are as follows: (1) COL is not monotonically decreasing with time in each cycle. Small humps can be seen (or short plateaus) around every solar maxima. (2) The distribution of COL resulting from each hemisphere is bimodal, which can well be represented by the double Gaussian function. (3) As far as the primary component of the double Gaussian function is concerned, for a given data subset, the distributions due to the sunspots appearing in two different hemispheres are alike. Regardless of which hemisphere is magnetically dominant, the primary component of the double Gaussian function seems relatively unchanged. (4) When the northern (southern) hemisphere is dominant the width of the secondary component of the double Gaussian function in the northern (southern) hemisphere case is about twice as wide as that in the southern (northern) hemisphere. (5) For the distribution of the COL averaged with signed latitude, whose distribution is basically described by a single Gaussian function, it is shifted to the positive (negative) side when the northern (southern) hemisphere is dominant. Finally, we conclude by briefly discussing the implications of these findings on the variations in the solar activity.  相似文献   

16.
We examine daily records of sunspot group areas (measured in millionths of a solar hemisphere or μHem) for the last 130 years to determine the rate of decay of sunspot group areas. We exclude observations of groups when they are more than 60° in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a group’s disk passage. This leaves data for over 18 000 measurements of sunspot group decay. We find that the decay rate increases linearly from 28 μHem day−1 to about 140 μHem day−1 for groups with areas increasing from 35 μHem to 1000 μHem. The decay rate tends to level off for groups with areas larger than 1000 μHem. This behavior is very similar to the increase in the number of sunspots per group as the area of the group increases. Calculating the decay rate per individual sunspot gives a decay rate of about 3.65 μHem day−1 with little dependence upon the area of the group. This suggests that sunspots decay by a Fickian diffusion process with a diffusion coefficient of about 10 km2 s−1. Although the 18 000 decay rate measurements are lognormally distributed, this can be attributed to the lognormal distribution of sunspot group areas and the linear relationship between area and decay rate for the vast majority of groups. We find weak evidence for variations in decay rates from one solar cycle to another and for different phases of each sunspot cycle. However, the strongest evidence for variations is with latitude and the variations with cycle and phase of each cycle can be attributed to this variation. High latitude spots tend to decay faster than low latitude spots.  相似文献   

17.
BRAJŠA  R.  RUŽDJAK  V.  VRŠNAK  B.  POHJOLAINEN  S.  URPO  S.  SCHROLL  A.  WÖHL  H. 《Solar physics》1997,171(1):1-34
The solar rotation rate obtained using the microwave Low-brightness-Temperature Regions (LTRs) as tracers in the heliographic range ± 55° from the years 1979–1980, 1981–1982, 1987–1988, and 1989–1991 varied from 3% to 4% in medium latitudes, and below 1% at the equator. Using H filaments as tracers at higher latitudes from the years 1979, 1980, 1982, 1984, and 1987, the solar rotation rate variation was between 2% and 8%. This represents an upper limit on the rotation rate variation during the solar activity cycle. Such changes could be caused by short-lived, large-scale velocity patterns on the solar surface. The Sun revealed a higher rotation rate on the average during the maxima of the solar activity cycles 21 and 22, i.e., in the periods 1979–1980 and 1989–1991, respectively, which differs from the rotation rates (lower on the average) in some years, 1981–1982 and 1987–1988, between the activity maximum and minimum (LTR data). Simultaneous comparison of rotation rates from LTRs and H filament tracings was possible in very limited time intervals and latitude bands only, and no systematic relationship was found, although the rotation rates determined by LTRs were mostly smaller than the rotation rates determined by H filaments. The errors obtained by applying different fitting procedures of the LTR data were analyzed, as well as the influence of the height correction. Finally, the north–south asymmetry in the rotation rate investigated by LTRs indicates that the southern solar hemisphere rotated slower in the periods under consideration, the difference being about 1%. The reliability of all obtained results is discussed and a comparison with other related studies was performed.  相似文献   

18.
Time series of daily numbers of solar Hα flares from 1955 to 1997 are studied by means of wavelet power spectra with regard to predominant periods in the range of ∼ 24 days (synodic). A 24-day period was first reported by Bai (1987) for the occurrence rate of hard X-ray flares during 1980–1985. Considering the northern and southern hemisphere separately, we find that the 24-day period is not an isolated phenomenon but occurs in each of the four solar cycles investigated (No. 19–22). The 24-day period can be established also in the occurrence rate of subflares but occurs more prominently in major flares (importance classes ≥ 1). A comparative analysis of magnetically classified active regions subdivided into magnetically complex (i.e., including a γ and/or δ configuration) and non-complex (α, β) reveals a significant relation between the appearance of the 24-day period in Hα flares and magnetically complex sunspot groups, whereas it cannot be established for non-complex groups. It is suggested that the 24-day period in solar flare occurrence is related to a periodic emergence of new magnetic flux rather than to the surface rotation of sunspots.  相似文献   

19.
A program of digitization of the daily white-light solar images from the Kodaikanal station of the Indian Institute of Astrophysics is in progress. A similar set of white-light data from the Mount Wilson Observatory was digitized some years ago. In both cases, areas and positions of individual sunspot umbrae are measured. In this preliminary report, comparisons of these measurements from the two sites are made. It is shown that both area and position measurements are in quite good agreement. The agreement is sufficiently good that it is possible to measure motions and area changes of sunspots from one site to the next, involving time differences from about 12 hours to about 36 hours. This enables us to trace the motions of many more small sunspots than could be done from one site alone. Very small systematic differences in rotation rate between the two sites of about 0.4% are found. A portion of this discrepancy is apparently due to the difference in plate scales between the two sites. Another contributing factor in the difference is the latitude visibility of sunspots. In addition it is suggested that a small, systematic difference in the measured radii at the two sites may contribute a small amount to this discrepancy, but it has not been possible to confirm this hypothesis. It is concluded that in general, when dealing with high precision rotation results of this sort, one must be extremely careful about subtle systematic effects.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

20.
K. Mursula  T. Hiltula 《Solar physics》2004,224(1-2):133-143
Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2 tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号