首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
雷州半岛红树林边缘效应及其对海岸有机碳库的影响   总被引:1,自引:0,他引:1  
作为滨海湿地与邻近海区之间物质循环、能量和物种流动及其相互作用的重要界面,红树林的边缘效应对研究海陆生态系统相互作用,滨海湿地生物地貌形成过程以及海岸带有机碳库分布格局等方面的具有重要意义。文章以雷州半岛东岸红树林4种典型地貌分布区为重点,通过调查红树林前缘光滩,林缘及林内植被及土壤理化特征的变化,探讨红树林边缘效应的表现及其对土壤有机碳库的影响。结果表明,不同地貌类型红树林边界区的群落结构及土壤理化因子分布特征有所不同。边界区群落特征表现为林缘的冠层低于林内,叶面积指数低于林内,物种丰富度林内高于林缘(除河口区外),且林缘的植被盖度受风浪影响显著,表现出河口区>内湾区>岛屿区>前沿浪击区。土壤理化性质边缘效应表现为林缘的pH值、粒度低于光滩,氧化还原电位、盐度高于光滩(除内湾区外),而林内的土壤理化性质波动较大,可能受林缘植被演替及地貌双重影响。不同地貌单元红树林边界区的土壤表层有机碳含量,有机碳密度均表现为林内>林缘>光滩。综合影响表层土壤有机碳的主要生物及非生物因子进行主成分分析和相关分析,结果显示土壤表层有机碳密度与环境第一主成分呈显著负相关,即受植被盖度,叶面积指数和土壤pH因子影响密切。红树林土壤有机碳沉积虽然受到不同水文地貌的影响,但总体而言,红树林初级生产输入和土壤酸性环境对红树林林下土壤有机碳库的富存贡献显著。  相似文献   

2.
红树林(Mangroves)是生长在热带和亚热带海岸潮间带的木本植物群落。老鼠簕(Acanthus ilicifolius)是我国红树林林下灌丛的主要物种,是林下植被碳库的主要构成成分。本研究选取深圳福田红树林区的林下、林窗、林缘和光滩等不同生境下自然生长的老鼠簕植株,测定植株生物量和光合特性等相关指标。研究表明,林窗生境下的老鼠簕植株的光合能力、光合固碳速率和地上生物量累积均达到最大;林下生境最不利于老鼠簕植株固碳;光滩的老鼠簕植株具有较高的地下生物量累积,但由于其蒸腾速率高、水分利用率低下,其固碳较低。光照强度是决定不同生境老鼠簕植株固碳的关键因子。在未来我国红树林造林中,老鼠簕可作为林下植被构建,以提高红树林生物量总碳库,但最适宜老鼠簕固碳的光照约为40%~80%。本文研究结果将为红树林造林实践中的物种选择和林分构建提供理论参考。  相似文献   

3.
稳定碳、氮同位素在生态系统研究中的应用   总被引:8,自引:0,他引:8  
在简要介绍了稳定同位素测定方法之后 ,对稳定碳、氮同位素在生态系统领域中关于系统的碳源、能量流动、营养结构、污染物的生物放大作用及系统稳定性变化的应用研究作了较为系统的论述 ,并对稳定碳、氮同位素在赤潮研究、环境污染治理、生态动力学建模及有机分子化合物系列示踪技术等方面的应用提出展望  相似文献   

4.
本文测定了海南儋州湾南岸柱状沉积物的粒度、总有机质参数(TOC、C/N和 δ13C)和类脂生物标志物含量,并通过端元混合模型使用红树植物特征标志物蒲公英萜醇含量、长链正构烷烃含量和δ13C值半定量区分了海南儋州湾南岸沉积有机质来源,尤其是红树林的贡献.另外,通过估算沉积物的有机碳储量来评估儋州湾红树林区域的储碳能力.在...  相似文献   

5.
气候变化和人类活动制约下的红树林演变是一种长时间尺度效应,而沉积物则是记录这种响应的最佳档案。采用古生态学研究思路,选择有效的示踪参数是解读这一档案的有效途径。本文通过广西钦州湾红树林区1根柱状沉积物中有机碳同位素(δ13C)、C/N分析和孢粉鉴定,以沉积物中的红树林源有机碳贡献和红树植物孢粉组合为示踪参数,在210Pb年龄框架构建的基础上,通过对比研究红树林源有机碳贡献和红树孢粉组合特征,揭示百年来钦州湾红树林兴衰和群落演替规律;进而重塑其红树林演变历史:兴盛期(1864-1918年)、衰退期(1918-1968年)和低谷期(1968-2007年),这与土地替代、遥感分析和现场勘测数据较为吻合。结合气候变化和人类活动资料,发现钦州湾红树林的近期衰退主要源于人类活动的影响,尤其是虾塘围垦;而与气候变化关系不大。  相似文献   

6.
红树林是具有重要碳汇功能的生态系统,其保护和修复成为海洋领域应对气候变化的重要手段.适宜的生境条件是红树林生态修复成功与否的关键因素,而红树植物物种和种植措施等也决定了修复后生态系统结构和功能的发展.本研究综述了红树林生态修复固碳功能的特点,分析了生境条件、物种和种植措施等因素对红树林生态系统固碳效果的影响,以期为红树...  相似文献   

7.
红树林海岸的沉积物输运和碳沉降特征   总被引:1,自引:0,他引:1  
Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boundaries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often "environmentally sensitive" to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, although the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth and δ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.  相似文献   

8.
Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments and scientists. Mangroves sediments can provide detailed records of mangrove species variation in the last one hundred years, based on detailed 210 Pb data. The study traced the history of mangrove development and its response to environmental change over the last 140 years in two mangrove swamps of Guangxi, Southwest China. Average sedimentation rates were calculated to be 0.48 cm/a and 0.56 cm/a in the Yingluo Bay and the Maowei Sea, respectively. Chemical indicators(δ13Corg and C:N) were utilized to trace the contribution of mangrove-derived organic matter(MOM) using a ternary mixing model. Simultaneous use of mangrove pollen can help to supplement some of these limitations in diagenetic/overlap of isotopic signatures. We found that vertical distribution of MOM was consistent with mangrove pollen, which could provide similar information for tracing mangrove ecosystems. Therefore, mangrove development was reconstructed and divided into three stages: flourishing, degradation and re-flourishing/re-degradation period. The significant degradation, found in the period of 1968–1998 and 1907–2007 in the Yingluo Bay and the Maowei Sea, respectively, corresponding to a rapid increase of reclamation area and seawall length, rather than climate change as recorded in the region.  相似文献   

9.
渤海及北黄海河流悬浮颗粒碳氮同位素时空分布及源解析   总被引:2,自引:0,他引:2  
于靖  张华 《海洋科学》2017,41(5):93-102
选择流入渤海和北黄海的36条主要河流为研究对象,对比了平水期、丰水期和枯水期水体中悬浮颗粒物和河流表层沉积物的碳和氮稳定同位素的地球化学特征,并对颗粒物有机质碳和氮来源进行分析。结果表明,水体悬浮有机质碳同位素总体上表现为δ13C平水期δ13C丰水期δ13C枯水期的特点,δ15N值呈δ15N丰水期δ15N平水期δ15N枯水期的特点。渤海和北黄海的主要入海河流悬浮颗粒物有机质的来源具有明显的季节性差异,悬浮颗粒有机质碳平水期(春秋季)来源以C3植物、土壤有机质和水生藻类为主,丰水期(夏季)碳的各来源中浮游植物的贡献率明显增大,枯水期(冬季)则表现为陆源C3植物分解和水源性有机质的混合来源;悬浮颗粒态氮的来源与季节性降水量、生活污水、合成化肥及河流内源性水生植物密切相关。  相似文献   

10.
2010—2018年海南东寨港红树林湿地碳收支的变化分析   总被引:3,自引:0,他引:3  
  相似文献   

11.
Mangrove ecosystems are sites with high biodiversity of benthic fauna, and fiddler crabs (genus Uca) are common benthic fauna in mangroves. The North Sulawesi in Indonesia has a good condition of mangrove while the information of the fiddler crabs is still limited. Manual samplings were conducted in wet, dry and transient seasons at a mangrove in Kema, North Sulawesi to investigate the species composition, density and distribution pattern of fiddler crabs. A total of 168 individuals, subjected to eight species of genus Uca crabs were collected at the mangrove, with U. triangularis having the highest abundance and U. annulipes having the lowest abundance. The densities of fiddle crabs were 27.56 ind./m2, 32.89 ind./m2 and 14.22 ind./m2 at the seaward, middle and landward zones, respectively, and the density was higher in dry and wet seasons than in transient season.  相似文献   

12.
Mangroves are highly productive ecosystems that exhibit a diverse range of habitats, including tidal creeks and flats, forest gaps and interior forest with varying understory light intensity, tidal dynamics, geomorphological settings, and overall biological production. Within mangrove ecosystems, invertebrates and fish feed on heterogeneous food sources, the occurrence of which is unevenly distributed across the system. This provides a basis for testing models of carbon transfer across mangrove ecosystems. We hypothesized that the carbon transfer and assimilation by fish and invertebrates will vary across the different mangrove habitats and that such variations can be predicted by their stable isotope compositions. We analysed δ13C and δ15N signatures of consumers and their potential organic carbon sources across a tropical mangrove ecosystem in Vietnam. The δ13C values of crabs and snails significantly decreased from the tidal flat to interior forest, indicating that variations in carbon transfer and assimilation occurred at small scales <30 m. Reduced variation in δ13C of suspension‐feeding bivalves suggested that tidal water was a vector for large‐scale transport of carbon across the mangrove ecosystem. An analysis of co‐variance using habitat as a fixed factor and feeding habit and movement capacity of consumers as co‐variates indicated that habitat and feeding types were major features that affected the δ13C values of invertebrates and fish. The findings demonstrate that carbon transfer and assimilation across mangrove ecosystems occur as a diverse combination of small (<30 m) and large (>30 m) scale processes.  相似文献   

13.
Mangrove forests are vulnerably threatened by sea level rise (SLR). Vegetation organic carbon (OC) stocks are important for mangrove ecosystem carbon cycle. It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change. In this study, biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata (a common species in China) mangrove forests under three intertidal elevations through species-specific allometric equations. This study simulated mangrove forests with SLR values of 0 cm, 40 cm and 80 cm, respectively, representing for the current, future ~100 a and future ~200 a SLR of mangrove forests along the Jiulong River Estuary, China. SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation. The total vegetation biomasses were (12.86±0.95) kg/m2, (7.97±0.90) kg/m2 and (3.89±0.63) kg/m2 at Sites SLR 0 cm, SLR 40 cm and SLR 80 cm, respectively. The total vegetation OC stock decreased by approximately 3.85 kg/m2 (in terms of C) from Site SLR 0 cm to Site SLR 80 cm. Significantly lower vegetation biomass and OC stock of various components (stem, branch, leaf and root) were found at Site SLR 80 cm. Annual increments of vegetation biomass and OC stock also decreased with SLR increase. Moreover, significant lower sedimentation rate was found at Site SLR 80 cm. These indicated that SLR will decrease mangrove vegetation biomass and OC stock, which may reduce global blue carbon sink by mangroves, exacerbate global warming and give positive feedback to SLR.  相似文献   

14.
In order to characterize the sources and fate of organic matter (OM) in the Pichavaram estuarine-mangrove ecosystem (east coast of India), stable isotope (δ13C and δ15N) ratios and molecular lignin analyses were conducted in plant litter, benthic algae, sediment, particulate matter and in a variety of benthic invertebrate species. The δ13C signature of plant litter ranges from −29.75‰ to −27.64‰ suggesting that mangrove trees follow the C3 photosynthetic pathway. Sedimentary δ13C signature (−28.92‰ to −25.34‰) demonstrates the greater influence of plant litter organic matter on sedimentary organic matter. Suspended particulate organic pool was influenced by terrestrial source and also seems to be influenced by the marine phytoplankton. Enriched signature of δ15N in surface sediments (4.66–8.01‰; avg. 6.69‰) suggesting the influence of anthropogenic nitrogen from agricultural fields and human settlements. Spatial chemical variability in availability of nitrogen and plant associated microbial interactions demonstrate variability in δ15N signature in mangrove plant litter. Two (lower and higher) trophic levels of invertebrates were identified with and observed >4‰ gradient in δ13C signal between these two trophic groups. The observed δ13C values suggest that the lower level invertebrates feed on phytoplankton and higher level organisms have a mixed source of diet, phytoplankton, sediment and particulate organic matter. Lignin phenol analyses explain that the benthic surface layer was almost free of lignin. The ratio between syringyl phenols to vanillyl phenols (S/V) is 1.14–1.32 (avg. 1.23) and cinnamyl phenols to vanillyl phenols (C/V) is 0.17–0.31 (avg. 0.24), demonstrate non-woody angiosperm tissues was the major sources of lignin to this ecosystem, while aldehyde to acid ratios (Ad/Al) describe diagenetic nature of sediment and is moderately to less degraded. A two-end-member mixing model indicate that the terrigenous OM was dominant in the estuarine zones, while in the mangrove zone terrigenous supply accounts for 60% and marine input accounts for 40%.  相似文献   

15.
Bone Gulf is one of the inter-arm basins of the unusual K-shaped island of Sulawesi. Its age, character and origin are disputed. This study is based on recently acquired 2D seismic lines, seabed multibeam mapping and limited well data, and is linked to stratigraphy on land. The gulf is probably underlain by pre-Neogene volcanogenic, sedimentary, metamorphic and ultramafic rocks, and includes crust of Australian origin. We favour basin initiation in the Miocene rather than Eocene, by extension associated with strike-slip deformation. The main basin trends N–S and is divided into several sub-basins and highs. The highs segment the gulf and their WNW–ESE orientations reflect pre-Neogene basement structures. They are interpreted as strike-slip fault zones active at different times in the Neogene. A southern high was active relatively early, whereas further north there is evidence of young displacements during the Late Neogene. These are visible on the seabed above a high linked to the Kolaka Fault on land. Early basin-bounding faults are oriented NNW–SSE and record extension and strike-slip movements, like the sub-parallel Walanae Fault of South Sulawesi which can be traced offshore into extensional faults bounding the young and narrow Selayar Trough. Sediment in the basins came mainly from the north with contributions from both west and east. Carbonate deposits formed at the margins while deeper marine sediments were deposited in the axial parts of the gulf. An Early Pliocene unconformity can be mapped across the study area marking major uplift of Sulawesi and subsidence of Bone Gulf. This regional event caused major influx of clastic sediments from the north, development of a southward-flowing canyon system, and back-stepping and drowning of carbonates at the basin margins. Hydrocarbons are indicated by seeps, and Bone Gulf has potential sources, reservoirs and seals, but the complex faulting history is a risk.  相似文献   

16.
Mangrove trees may allocate >50% of their biomass to roots. Dead roots often form peat, which can make mangroves significant carbon sinks and allow them to raise the soil surface and thus survive rising sea levels. Understanding mangrove root production and decomposition is hence of theoretical and applied importance. The current work explored the effects of species, site, and root size and root nutrients on decomposition. Decomposition of fine (≤3 mm diameter) and coarse (>3 mm diameter, up to a maximum of ∼9 mm) roots from three mangrove species, Avicennia marina, Bruguiera gymnorrhiza and Ceriops tagal was measured over 12 months at 6 sites along a tidal gradient in Gazi Bay, Kenya. C:N and P:N ratios in fresh and decomposed roots were measured, and the effects on decomposition of root size and age, of mixing roots from A. marina and C. tagal, of enriching B. gymnorrhiza roots with N and P and of artefacts caused by bagging roots were recorded. There were significant differences between species, with 76, 47 and 44 % mean dry weight lost after one year for A. marina, B. gymnorrhiza and C. tagal respectively, and between sites, with generally slower decomposition at dryer, high tidal areas. N enriched B. gymnorrhiza roots decomposed significantly faster than un-enriched controls; there was no effect of P enrichment. Mixing A. marina and C. tagal roots caused significantly enhanced decomposition in C. tagal. These results suggest that N availability was an important determinant of decomposition, since differences between species reflected the initial C: N ratios. The relatively slow decomposition rates recorded concur with other studies, and may overestimate natural rates, since larger (10–20 mm diameter), more mature and un-bagged roots all showed significantly slower rates.  相似文献   

17.
The sources and distributions of terrigenous organic matter (OM) were investigated in a small tropical estuary in the Hainan Island, South China. Plants, suspended particulate matter (SPM), and surface sediments samples in the estuary and coast were collected. Bulk properties [organic carbon (OC%), total nitrogen (TN%), stable carbon isotope (δ13C) and grain size] and lignin phenol concentrations were measured. OC% of mangrove plants was (43.4 ± 2.1)%, which is similar to the values reported for mangrove plants in other regions. OC% of sediment samples ranged from 0.07% to 1.42%, and they were related to the sediment texture. Lignin phenols in the sediment ranged from 5.16 mg/100 mg OC in the uppermost station to 0.51mg/100mg OC in the coast. The molar ratio of organic carbon to total nitrogen (C/N) (~7) and δ 13 C (~-31.1×10-3 ) of riverine SPM revealed that the major OM sources of riverine SPM were aquatic OM (phytoplankton and/or bacteria). Moreover, the lower lignin concentration (Λ8) and higher (Ad/Al)v of lignin phenols suggest that terrestrial OM in riverine SPM were mainly from soil. Furthermore, C/N ratio, δ13C and lignin phenols reveal that mangrove plants were the predominant OM sources of mangrove surface sediment. Based on the δ13C and lignin phenols, it can be concluded that the major OM sources in estuarine and coastal surface sediments were marine phytoplankton, riverine SPM and mangrove surface sediment. In addition, the higher (Ad/Al)v of lignin phenols in those coastal sediments indicate that seagrass might be a potential OM source in coastal sediments, however, the lower (Ad/Al)v in the estuarine sediments in turn suggests that seagrass could not be transported to the mangrove fringed region. A three-end-member model which is based on lignin concentrations and δ13C was applied to evaluate the contribution of mangroves to the organic matter preserved in the surface sediments. Around the mangrove fringed region, mangrove could contribute more than 50% to the sedimentary OM, and this value is much higher than riverine OM. Nevertheless, mangrove OM could not be efficiently transported to the coastal region. Our study suggests that mangrove forest is an important OM source in this small estuary.  相似文献   

18.
红树林作为热带地区碳储量最高的植被类型之一,面积呈现破碎化、减少趋势,地上生物量(AGB)的空间分布及其动态信息对于温室气体通量、碳储量的估算以及政策制定和实施至关重要。但是常用于AGB估算的光学数据或者SAR数据均存在信号饱和现象,且传统估算红树林生物量的算法对数据要求高、估算精度相对较低。针对该问题,本研究使用无人机激光雷达(UAV-LiDAR)数据对比了4种梯度增强决策树算法对于估算入侵红树林物种无瓣海桑AGB的精度,同时探讨了建模过程中的变量重要性。结果表明:(1)XGBR对于评估红树林AGB具有较高的拟合能力,达到R2 = 0.833 8,RMSE = 1.55 Mg/hm2;(2)研究区的无瓣海桑预测AGB的值为73.10~190.00 Mg/hm2,平均值为109.10 Mg/hm2;(3)描述冠层高度特征的激光雷达指标是估计红树林AGB的重要变量。本研究证明了UAV-LiDAR数据与XGBR模型对于估算红树林AGB的可行性,以期为红树林生态系统的蓝碳研究提供数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号