首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.  相似文献   

2.
Sägistalsee is a small lake located at the modern tree-line in the Swiss Alps. A 13.5 m long core taken in the central part of the 9.5 m deep basin consists of clayey silts and sands and dates back to about 9000 cal. BP. These sediments have a low organic content that steadily increases from 4–8% loss-on-ignition at 550 °C towards the top of the core, whereas the carbonate content decreases from 20 to about 10% loss-on-ignition at 950 %C. We outline the aims of an interdisciplinary research project centred on the Holocene sediments of Sägistalsee. We also present information about the lake, its sediments, and its catchment that forms the basis for different biotic and abiotic multi-proxy studies carried out on the sediments of Sägistalsee.  相似文献   

3.
Multi-proxy palaeoecological and palaeolimnological studies of the sedimentary record of Sägistalsee, a small lake at the present-day timberline in the Swiss Alps, reveal distinct changes in its catchment vegetation in relation to Holocene climate change and human impact. Four phases of catchment vegetation type were defined based on plant macrofossil analyses: open Betula-Pinus cembra woodland, Abies alba-Pinus cembra woodland, Picea abies forest, and cultural pasture. The expansion of spruce 6300 cal. BP had a major impact on all abiotic proxies, whereas the reaction of the biotic proxies to this catchment change was lagged by several centuries. During the Bronze Age (ca. 4000 cal. BP) the spruce forest was cleared and the catchment began to be used as grazing pastures. Changes in sedimentology, geochemistry, and magnetic parameters closely reflect the changes in catchment vegetation. The catchment vegetation types explain a statistically significant amount of the variance in the chironomid, cladoceran, sedimentological, and magnetic data but not in the geochemical data. The strong catchment-lake interaction masks any biotic responses to millennium-scale climatic oscillations.  相似文献   

4.
A 9000cal. year record of geochemistry was analysed in a sediment core obtained from a Swiss alpine hard-water lake (1937 ma.s.l.) that is located at the present-day tree-line. Geochemical stratigraphies are compared to changes in mineralogy, grain-size, pollen, and macrofossil records. This allows the reconstruction of the effects of changes in vegetation and of 3500 years of land-use in the catchment area on sediment geochemistry. Using principal component analysis, two major geochemical groups are distinguished: (i) Changes in concentrations of Rb, Ti, Zr, Fe, As, and Pb are closely related to corresponding changes in the concentrations of quartz and clay. They are thus considered to represent the silicate fraction which shows an increase from the oldest to the youngest core section. (ii) In contrast, Ca and Sr concentrations are positively correlated with changes in silt, sand, and calcite. They are therefore considered to represent the carbonate fraction which gradually decreased. Based on constrained cluster analysis, the core is divided into two major zones. The oldest zone (A; 9000–6400 cal.BP) is characterised by high concentrations of detrital carbonates. The more open catchment vegetation at that time promoted the physical weathering of these carbonates. The second major zone (B, 6400 cal.BP–1996 AD) is divided into four subsections with boundaries at ca. 3500, 2400, and 160cal. BP. The lower part of this zone, B1, is characterized by a gradual decrease in the carbonate-silt fraction and a pronounced increase in the silicate-clay fraction. This is concurrent with the expansion of Picea in the catchment area, which probably stabilized the soil. The middle part, B2 and B3 (3500–160cal. BP), comprises pronounced fluctuations in all elements, especially Ca, Sr, Mn, and Rb, but also in clay and silt. These changes are related to varying intensities of alpine farming. In the same section, Mn/Fe ratios are highly variable, suggesting changes in the mixing regime of the lake with phases of anoxic bottom water. The uppermost section, B4 (since 160cal. BP), is characterized by a steep decline in the silicate fraction and an increase in Ca and Sr. Despite the decrease in the silicate fraction, Pb increases, due to elevated atmospheric input resulting from early metal pollution, are masked by the high natural variability. Generally, changes in vegetation, which correspond to climate changes in the early Holocene and to human activities since ca. 3700cal. BP, are the controlling factor for variations in the geochemical composition of the sediment of Sägistalsee.  相似文献   

5.
The Holocene magnetic signature due to environmental change has been investigated in sediments from Sägistalsee, a small alpine lake in the Bernese Alps, Switzerland. The environmental signal in the mineral magnetic parameters of the sediments was compared with palynological and geochemical data. The types of magnetic minerals and their grain size reflect changes in the lake catchment, vegetation, and degree of erosional input. The concentration of the magnetic minerals, as expressed by isothermal and anhysteretic remanent magnetizations also reflect changes in vegetation, but may also be related to redox conditions during sedimentation. Climate influence on the mineral magnetic record has been recognized and interpreted as a consequence of the production of an authigenic mineral with particularly uniform magnetic properties during warmer stages and the influx of heterogeneous detrital magnetic mineral during cooler stages and under increased human activity.  相似文献   

6.
Environmental changes of the last 9,300 years were reconstructed by geochemical and pollen analyses of a 14-m-long, laminated sediment core from Lago Aleixo, south-eastern Brazil. Fossil pollen assemblages indicate open savannah vegetation (campo cerrado) and gallery forests until approximately 6,900 cal. BP. During that time, siderite laminae were deposited under anoxic conditions at the lake bottom. Then, increased rainfall and a shorter annual dry period allowed gallery forests and semi-deciduous forests to expand, leading to more closed cerrado vegetation. High-intensity rainfall events during this period are recorded as peaks in K and Ti concentrations. The sediment facies during this period consists of alternating layers of diatoms and minerogenic matter. C/N ratios imply that algae and perhaps soils, too, were the main contributors to sediment organic matter. Biogenic silica and δ13Corg variations indicate increasing primary productivity, which was related to higher nutrient flux from intensified leaching of soils, as shown by rising K/Al ratios. Around 800 cal. BP, a closed, semi-deciduous forest developed under present-day climate conditions. Slope stabilization diminished erosion processes in the catchment and caused reduced input of minerogenic matter into the basin. Human impact is evident in the topmost homogeneous sediments, as removal of the stabilizing forest cover amplified soil erosion. The continuous trend to more humid conditions during the Holocene probably reflects increased influence of the Amazon Basin as a moisture source. We conclude that the Lago Aleixo sediment archive was a sensitive recorder of environmental dynamics in tropical South America, which were mainly controlled by changes in precipitation patterns.  相似文献   

7.
Sediment cores from two neighbouring lakes (Viitna Linajärv and Viitna Pikkjärv) in northern Estonia were studied to determine lake-level fluctuations during the Holocene and their impact on biogeochemical cycling. Organic matter and pollen records dated by radiocarbon and radiolead indicated a water level rise in both lakes during the early Holocene (c. 10 000–8000 BP). A regression followed around 7500 BP and several transgressions occurred during the latter half of the Holocene, c. 6500 and 3000 BP. Human impact during the last centuries has caused short-term lake-level fluctuations and accelerated sediment accumulation in the lakes. The differences in water depth led to variations in sediment formation. During 10 000–8000 BP (Preboreal and Boreal chronozones) mineral-rich sediments with coloured interlayers deposited in L. Linajärv. These sediments indicate intensive erosion from the catchment and oxygen-rich lake, which favoured precipitation of iron oxides and carbonates. Fluctuations in water depth, leaching of nutrients from catchment soils and climatic changes increased the trophy of L. Linajärv around 6000 BP. The subsequent accumulation of gyttja, the absence of CaCO3 and the decrease in both the C/N ratio and phosphorus content in the sediments also indicate anoxic conditions in the hypolimnion. The similarity in the development of L. Linajärv and L. Pikkjärv and their proximity made it possible to discern the impact of water depths changes on biogeochemical cycling in lakes.  相似文献   

8.
An 8 m core from the central plain of the Petit Lac d'Annecy, France, two floodplain cores, river bedload sediments and several hundred soil samples from the catchment have been studied using magnetic techniques. The soils, mainly developed on limestones and local glacial tills, show widespread magnetic enhancement with higher ferrimagnetic concentrations and contents of SP grains than found in the lake sediments. Some soils show significant concentrations of canted antiferromagnetic minerals (mainly haematite). Using magnetic quotient parameters the surface soils are classified into four mineralogical types. The lake and floodplain sediment properties over the past 6000 yrs can largely be explained by the erosion and deposition of these sources, with a smaller superimposed biogenic (magnetosomes) signal. Derived sediment-source linkages allow the construction of several hypotheses about geomorphological changes in the catchment system: (i) the long-term erosion of high altitude unweathered substrates has gradually increased towards the present day; (ii) the erosion of high altitude soils has increased within the last 1000 yrs, possibly during the period of the 'Little Ice Age'; (iii) shifts towards an increased erosion of surface lowland soil occurred ~2000 and 1000 yrs ago and may be linked to an accelerated accretion of floodplain overbank deposits; (iv) there has been a significant storage of surface soil within floodplains, which leads to an underestimation of the importance of soil erosion in the lake sediment records; (v) the sediment transported by high magnitude, low frequency flood events has shifted in source from high altitude soils before ~1000 cal. yr BP to lowland and mid-altitude free draining soils after ~1000 cal. yr BP.  相似文献   

9.
The Holocence paleolimnology of Lake Sämbosjön is described using geochemical and diatom analyses. The objective of this study is the reconstruction of major changes in trophic state and productivity, and to interpret the major causative processes. The accumulation of organic matter indicates a relatively high productivity in early Holocene, and the diatom analysis indicates a relatively high trophic state and pH. A succeeding decrease in productivity and trophic state and lowering in pH is recorded from about 8000 BP. If lake development had been primarily edaphically conditioned, viz. determined by nutrient supply from catchment soils, such a progressive oligotrophication would represent the common development of temperate lakes. Between about 6000 BP and 4000 BP Lake Sämbosjön was characterized by relatively stable productivity and pH. From about 4000 BP the analyses reveal an increase again in trophic state, productivity, and in pH. This eutrophication, which continued throughout the late Holocene, was caused by an exceptionally strong human influence on the catchment of Lake Sämbosjön. The increased supply of nutrients from cleared and deforested catchment soils changed the trophic state and provided the basis for increased lake productivity.  相似文献   

10.
Environmental magnetic studies were conducted on a 9.42-m-long sediment core from Gonghai Lake, North China. Radiocarbon dating indicates that the record spans the last 15,000 cal year BP. The principal magnetic mineral in the sediments is pseudo-single domain magnetite of detrital origin with minimal post-depositional alteration. Although the variations in the concentration of detrital magnetic minerals and their grain size throughout the core reflect inputs from both soil erosion and eolian dust, it is shown that their climatic and environmental significance changes with time. In the lowermost part of the core, ~15,000–11,500 cal year BP, the magnetic minerals were supplied mainly by bedrock erosion, soil erosion and dust input when climate ameliorated after the cold and dusty last glacial maximum. The increasing magnetic susceptibility (χ) in this interval may indicate a combination of changes in the lake environment together with catchment-surface stabilization and a decreasing proportion of dust input. In the central part of the core, ~11,500–1,000 cal year BP, the detrital magnetic minerals mainly originated from dust inputs from outside the catchment when the lake catchment was covered by forest, and catchment-derived sediment supply (and thus the lake sediment accumulation rate) were minimal. The generally low concentration of magnetic minerals in this part of the core reflects the highest degree of soil stability and the strongest summer monsoon during the Holocene. In the uppermost part of the core, the last ~1,000 years, detrital magnetic minerals mainly originated from erosion of catchment soils when the vegetation cover was sparse and the sediment accumulation rates were high. Within this part of the core the high magnetic susceptibility reflects strong pedogenesis in the lake catchment, and thus a strong summer monsoon. This scenario is similar to that recorded in loess profiles. Overall, the results document three main stages of summer monsoon history with abrupt shifts from one stage to another: an increasing and variable summer monsoon during the last deglacial, a generally strong summer monsoon in the early and middle Holocene and a weak summer monsoon in the late Holocene. The results also suggest that different interpretational models may need to be applied to lake sediment magnetic mineral assemblages corresponding to different stages of environmental evolution.  相似文献   

11.
Subfossil chironomid analysis was applied to a sediment core from Sägistalsee, a small lake at present-day tree-line elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea (spruce) at ca. 6500 cal. 14C yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70–1450, 1900–2350, and 3500–3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e.g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.  相似文献   

12.
The Holocene diatom and pollen records from Kelly’s Lough have been analysed to determine the timing and extent of the acidification in this upland lake. The pollen data during the early Holocene reflect the typical vegetation changes that occur in sediments throughout Ireland during this period. The diatom record begins by being dominated by circumneutral and acidophilous benthic forms. Later tychoplanktonic Aulacoseira species begin to expand and dominate indicating increased water transparency following the stabilization of catchment soils. Peatland development in the catchment is evident from approximately 6,450 cal year BP. The main change in the diatom assemblages at this time is the decline of Aulacoseira species and expansion of periphytic species. At around 1,450 cal year BP, loss-on-ignition (LOI) values, Calluna pollen and microscopic charcoal all increase suggesting the initiation of a major phase of peat erosion and an increased inwash of organic matter to the lake. Lake acidity changed significantly although the initial acidification is very subtle as indicated by the diatom-inferred pH record. Changes in the diatom assemblages might be largely the result of increasing erosion and inwash of organic matter from the catchment to the lake leading to reduced water transparency and more acidic conditions. The diatom flora remains relatively stable until the mid-twentieth century when more acidibiontic species increase. These diatom changes result in the reconstructed pH curve showing a moderate recent acidification from pH 5.7 to 5.1. About half of the total change in pH took place by around the late 1960s. The lowest diatom-inferred pH value occurs in the late 1970s, and parallels the peak in SO2 emissions in Ireland. Acidic conditions seem to have prevailed in Kelly’s Lough throughout its entire history and alkalinity has been low or absent for much of the time. However, soil acidification and inwash of organic acids from peatlands are not a sufficiently effective mechanism to explain the low pH levels found today in Kelly’s Lough. The effect of acid deposition on the waters of Kelly’s Lough is clear and it has probably caused these already naturally acid waters to acidify further.  相似文献   

13.
Diatoms, pollen, physical and magnetic analyses of the sediments have been used to reconstruct the development over the last 6000 years of Lake Bussjösjön, a small lake in southern Sweden. Stratigraphic variations in a core of more than 15 m reveal changes in diatom assemblages, which correspond closely to changes in pollen, loss-on-ignition, and magnetic measurements that are related to land use and vegetation changes in the catchment. From ca 6000 BP to 2700 BP, a forest surrounded what was then a slightly eutrophic lake. The sudden appearance of Cyclostephanos dubius (Fricke) Round and several epiphytic/epipsammic diatoms at 2700 BP coincides with deforestation of the catchment (2700 BP to 2500 BP). A change in land use from predominantly pasture to arable land from 1300 BP to 1100 BP caused a high level of soil erosion with a decrease of C. dubius and the increase of Stephanodiscus species. An increase of epiphytic/epipsammic species coincides with increased arable farming and the change from a field-rotation to a crop-rotation system, and shows not only an increase in eutrophication but also changes in water depth. The influence of the catchment through time resulted in a smaller, shallower and eutrophic to hypertrophic lake.  相似文献   

14.
This study uses the Holocene lake sediment of Lake ?ū?i (Latvia, Vidzeme Heights) for environmental reconstruction with multi-proxy records including lithology, computerised axial tomography scan, grain-size analysis, geochemistry, diatoms and macrofossils, supported by AMS radiocarbon dating. Numerical analyses (PCA; CONISS) reveal three main phases in the development of the lake. Response to the Lateglacial–Holocene transition in Lake ?ū?i took place around 11,300 cal. BP. Organogenic sedimentation started with distinctive 5-cm-thick peat layer and was followed by lacustrine sedimentation of carbonaceous gyttja. Several findings of the peat layer with similar dated age and position at different absolute altitudes indicate that lake basin was formed by glaciokarstic processes. In the Early Holocene (until around 8,500 cal. BP), the lake was shallow and holomictic, surrounded by unstable catchment with erosion and inflow events. Predominance of diatom species of Cyclotella and Tabellaria, large numbers of respiratory horns of phantom midge pupae (Chaoboridae), high Fe/Mn ratio, as well as the presence of laminated sediments indicates the transition to a dimictic and oligo-mesotrophic lake conditions with high water level, anoxia in the near-bottom and stable catchment in the Middle Holocene (8,500–2,000 cal. BP). This contrasts with many hydrologically sensitive lakes in Northern and Eastern Europe in which the water level fell several meters during this period. During the Late Holocene (from 2,000 cal. BP to the present), the lithological and biotic variables reveal major changes, such as the increase in erosion (coarser grain-size fraction) and eutrophication [diatoms Aulacoseira ambigua (Grun.) Sim., Stephanodiscus spp., Cyclostephanos dubius (Fricke) Round]. Characteristics of lake-catchment system during the Late Holocene reflect anthropogenic signal superimposed on the natural forcing factors. To date, the Late Quaternary palaeolimnological reconstructions using lake sediment has been limited in the Baltic region. Therefore, findings from Lake ?ū?i provide important information about environmental and climatic changes that took place in this part of Eastern Europe. This study shows that the relative importance of climate and local factors has varied over the time and it is essential to consider the lake basin topography, catchment size and land cover as potential dominant forcing factors for changes in sedimentary signal.  相似文献   

15.
The Holocene environmental history and climate are reconstructed for Råtåsjøen, a low-alpine lake in south-central Norway. The reconstructions are based on chironomids, diatoms, pollen, plant macrofossils, and sediment characteristics. From plant macrofossil evidence, birch trees (Betula pubescens) immigrated ca. 10,000 cal BP. The chironomid-inferred mean July air temperature was high, but may be unreliable during the early stages of the lakes history due to the high abundance of Chironomus anthracinus type, a taxon that may include several species. From ca. 9000 cal BP the inferred mean July temperature was lower (ca. 9 °C). Temperatures increased towards 8000 cal BP and pine (Pinus sylvestris) reached its upper limit near the lake. July temperature may have become a significant factor controlling long-term pH in the lake, starting shortly after 8000 cal BP. High pH values were associated with periods of warm summers and lower pH values occurred during periods of colder summers. Alkalinity processes within the lake and/or the catchment are possible factors controlling this relationship. A temperature decline at ca. 5400 cal BP separated two 10.6 °C temperature maxima around 6400 and 4500 cal BP. The 1.5 °C decline in July air temperatures from ca. 4400 cal BP was paralleled by a decrease of pH from 7.2 to 6.8. Following the temperature drop, first pine and then birch trees declined and disappeared from the catchment and organic accumulation in the lake increased. The increased organic accumulation rate had a positive effect on diatom production. At ca. 2700 cal BP the temperature reached a minimum (ca. 9.2 °C) and correspondingly a second pH minimum was reached. Temperature decreased again slightly at ca. 400 cal BP during the Little Ice Age, before increasing by about 0.5 °C towards the present. Percentage organic carbon as estimated by loss-on-ignition appears to be better correlated with chironomid-inferred July temperatures than organic accumulation rates, at least for the last 9000 years. Accumulation rates of organic sediments are more coupled with catchment-related processes, such as erosion and major changes in vegetation, than is percentage organic carbon.  相似文献   

16.
Pollen and spores with resistant exines are preferentially preserved in soils, and during periods of soil erosion they can become incorporated into lake sediments. As a result, the contemporary vegetation may be poorly represented by the palynomorphs in the lake sediments because of the reworked component of inwashed pollen and spores. We record the proportion of palynomorphs with corroded exines in sediment cores from four lakes in the eastern North Island of New Zealand to document changing sources of palynomorphs over the last 2000 years. During this period, the catchments experienced major vegetation disturbances, both natural (from volcanism and fire) and anthropogenic including deforestation ca. 600 years ago, and the European conversion of fern-scrubland to pasture in the 19th century. Corroded palynomorphs are more abundant in inwashed sediments than authigenic sediments. Catchment soil disturbance was minor during the forested period, and characterised by small, inwashed, sediment pulses after storms, and a relatively low percentage of corroded palynomorphs. Although initial Maori forest clearance by fire led to a temporary increase in erosion in one lake catchment, rapid replacement of forest by a dense bracken fern cover helped to minimise soil erosion and reworking of palynomorphs in this period. European pastoralists replaced the bracken fern with shallow-rooted pasture grasses about 150 years ago. In erosion prone lake catchments, this led to a rapid increase of inwashed eroded soils and littoral sediments, and their component of resistant palynomorphs, reaching the lake sediments. As a result, the palynological records from these catchments during the European period are distorted by reworking. By contrast, over the same period, the palynological record from a lake with no inflowing streams and stable catchment soils more faithfully represented the contemporary vegetation cover. Exine corrosion has been used to help identify periods of reworking in the lake sediments and to allow for a correction of distortion caused by reworking.  相似文献   

17.
An 8000-year record of palaeoproductivity, based on the chemical and chironomid stratigraphies from Lake Päijänne, S. Finland, was assessed with respect to known morphometric, climatic and anthropogenic events. A gradual trend of dystrophication and an associated decrease in aquatic production was detected during the Holocene, with the following exceptions: (1) high diatom and chironomid production around 8000-6000 cal yr BP, (2) eutrophication around 2000 cal yr BP, and (3) an anthropogenic signal during the last few decades.The changes in chironomid assemblages, before the past few decades, have mainly been shifts in concentration, but not in species composition. Variation in chironomid production was mainly explained by the accumulations of biogenic silicon, carbon and organic matter. Nutrient availability seems to be important in controlling biogenic silicon, which we use to infer past diatom production. The high production ca. 8000-6000 cal yr BP and the fluctuation in chironomid influx after ca. 2000 cal yr BP, however, were probably caused by the proposed warm/dry and cold/wet conditions during these times, respectively. These results highlight the sensitivity of boreal shield lake ecosystems to climatic forcing. In contrast, the pronounced change in the morphometry of the basin around 7000 cal yr BP had little effect on the trophic state of the lake. The human-induced trophic change during the past few decades has affected the Lake Päijänne ecosystem to an extent never experienced before during the last 8000-years.  相似文献   

18.
Permafrost in peatlands of subarctic Sweden is presently thawing at accelerated rates, which raises questions about the destiny of stored carbon and nutrients and impacts on adjacent freshwater ecosystems. In this study we use peat and lake sediment records from the Stordalen palsa mire in northern Sweden to address the late Holocene (5,000 cal BP-present) development of the mire as well as related changes in carbon and nutrient cycling. Formation, sediment accumulation and biogeochemistry of two studied lakes are suggested to be largely controlled by the development of the mire and its permafrost dynamics. Peat inception took place at ca. 4,700 cal BP as a result of terrestrialisation. Onset of organic sedimentation in the adjacent lakes occurred at ca. 3,400 and 2,650 cal BP in response to mire expansion and permafrost aggradation, respectively. Mire erosion, possibly due to permafrost decay, led to re-deposition of peat into one of the lakes after ca. 2,100 cal BP, and stimulated primary productivity in the other lake at ca. 1,900–1,800 cal BP. Carbonate precipitation appears to have been suppressed when acidic poor fen and bog (palsa) communities dominated the catchment mire, and permafrost-induced changes in hydrology may further have affected the inflow of alkaline water from the catchment. Elevated contents of biogenic silica and diatom pigments in lake sediments during periods of poor fen and bog expansion further indicate that terrestrial vegetation influenced the amount of nutrients entering the lake. Increased productivity in the lake likely caused bottom-water anoxia in the downstream lake and led to recycling of sediment phosphorous, bringing the lake into a state of self-sustained eutrophication during two centuries preceding the onset of twentieth century permafrost thaw. Our results give insight into nutrient and permafrost dynamics in a subarctic wetland and imply that continued permafrost decay and related vegetation changes towards minerotrophy may increase carbon and nutrient storage of mire deposits and reduce nutrient fluxes in runoff. Rapid permafrost degradation may on the other hand lead to widespread mire erosion and to relatively short periods of significantly increased nutrient loading in adjacent lakes.  相似文献   

19.
The sediments of Lake Kilpisjärvi were described and analysed for element chemistry and pollen to study the effects of treeline fluctuations in the catchment. Lake Kilpisjärvi is one of the largest lakes in Finnish Lapland, with its catchment partly above the treeline and partly covered with mountain birch woodland. Although the presence of subfossil pine shows that the catchment was previously covered with mountain birch woodland during the Holocene, the present pine treeline has receded 70 km from the lake. Pollen analysis results show that pine immigrated to the area during the Atlantic chrone and that 7000 BP pine forests occupied much of the catchment. Pine started to decline around 3500 BP and vegetation in the catchment became more open. Alkaline and alkaline earth metals and some transition metals document the change from glaciolacustrine clay to more organic sediment. However, these geochemical trends give no indication of changes in erosion rate resulting from changes in catchment vegetation. These changes were detected by plotting suitable element ratios. In addition to the conventional Si/Al and Na/K ratios, the Ca labile /Si ratio and especially the ratio of labile Ca to K were found to be useful. Of all the elements analysed, potassium showed the strongest reaction to changes in the balance between weathering and erosion. During the phase of denser forests, chemical weathering was dominant, whereas during phases of open catchment, physical erosion prevailed. The effects of changing climate and catchment vegetation were distinguished from other signals. For instance, iron and manganese were enriched at the top of the core due to diffusion and, at the same time, old precipitate layers persisted after burial to deeper levels in the sediment. These iron and manganese rich layers had an effect on the distributions of cobalt, zinc, and vanadium, showing increased concentrations of these elements. Other effects that made the interpretation of chemical records difficult were the effect of ongoing mineralization of organic matter in the top layers of sediment and the effect of biogenic silicon. Owing to the stable conditions of the lake, the desired chemical signals were detected, despite the masking trends.  相似文献   

20.
Cladoceran remains were analysed in a 1344 cm long sediment core from Sägistalsee (Swiss Alps, 1935 m asl) which covered the last 9000 years. Planktonic Cladocera were almost exclusively represented by Daphnia species, which occurred throughout the core. The chydorid fauna consisted of four species: Alona quadrangularis, Alona affinis, Acroperus harpae and Chydorus sphaericus of which the former was by far the most frequent species. The chydorid succession was characterised by disappearance and re-appearance of Acroperus harpae and Chydorus sphaericus at about 8400 and 3340 cal. BP, respectively. As a result, there was a long period of about 5000 years in which only two chydorid species were present with strong predominance (88.9%) of Alona quadrangularis. There was also a long-term trend of an increase of Alona affinis at the expense of Alona quadrangularis throughout the core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号